| Metamath
Proof Explorer Theorem List (p. 439 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Axiom | ax-frege28 43801 | Contraposition. Identical to con3 153. Theorem *2.16 of [WhiteheadRussell] p. 103. Axiom 28 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) | ||
| Theorem | frege29 43802 | Closed form of con3d 152. Proposition 29 of [Frege1879] p. 43. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | ||
| Theorem | frege30 43803 | Commuted, closed form of con3d 152. Proposition 30 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (¬ 𝜒 → ¬ 𝜑))) | ||
| Theorem | axfrege31 43804 | Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||
| Axiom | ax-frege31 43805 | 𝜑 cannot be denied and (at the same time ) ¬ ¬ 𝜑 affirmed. Duplex negatio affirmat. The denial of the denial is affirmation. Identical to notnotr 130. Axiom 31 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (¬ ¬ 𝜑 → 𝜑) | ||
| Theorem | frege32 43806 | Deduce con1 146 from con3 153. Proposition 32 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → ¬ ¬ 𝜑)) → ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑))) | ||
| Theorem | frege33 43807 | If 𝜑 or 𝜓 takes place, then 𝜓 or 𝜑 takes place. Identical to con1 146. Proposition 33 of [Frege1879] p. 44. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) | ||
| Theorem | frege34 43808 | If as a consequence of the occurrence of the circumstance 𝜑, when the obstacle 𝜓 is removed, 𝜒 takes place, then from the circumstance that 𝜒 does not take place while 𝜑 occurs the occurrence of the obstacle 𝜓 can be inferred. Closed form of con1d 145. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (𝜑 → (¬ 𝜒 → 𝜓))) | ||
| Theorem | frege35 43809 | Commuted, closed form of con1d 145. Proposition 35 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → (¬ 𝜒 → (𝜑 → 𝜓))) | ||
| Theorem | frege36 43810 | The case in which 𝜓 is denied, ¬ 𝜑 is affirmed, and 𝜑 is affirmed does not occur. If 𝜑 occurs, then (at least) one of the two, 𝜑 or 𝜓, takes place (no matter what 𝜓 might be). Identical to pm2.24 124. Proposition 36 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
| Theorem | frege37 43811 | If 𝜒 is a necessary consequence of the occurrence of 𝜓 or 𝜑, then 𝜒 is a necessary consequence of 𝜑 alone. Similar to a closed form of orcs 875. Proposition 37 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜑 → 𝜒)) | ||
| Theorem | frege38 43812 | Identical to pm2.21 123. Proposition 38 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | ||
| Theorem | frege39 43813 | Syllogism between pm2.18 128 and pm2.24 124. Proposition 39 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜑) → (¬ 𝜑 → 𝜓)) | ||
| Theorem | frege40 43814 | Anything implies pm2.18 128. Proposition 40 of [Frege1879] p. 46. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (¬ 𝜑 → ((¬ 𝜓 → 𝜓) → 𝜓)) | ||
| Theorem | axfrege41 43815 | Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ¬ ¬ 𝜑) | ||
| Axiom | ax-frege41 43816 | The affirmation of 𝜑 denies the denial of 𝜑. Identical to notnot 142. Axiom 41 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (𝜑 → ¬ ¬ 𝜑) | ||
| Theorem | frege42 43817 | Not not id 22. Proposition 42 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ¬ ¬ (𝜑 → 𝜑) | ||
| Theorem | frege43 43818 | If there is a choice only between 𝜑 and 𝜑, then 𝜑 takes place. Identical to pm2.18 128. Proposition 43 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
| Theorem | frege44 43819 | Similar to a commuted pm2.62 899. Proposition 44 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) | ||
| Theorem | frege45 43820 | Deduce pm2.6 191 from con1 146. Proposition 45 of [Frege1879] p. 47. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((¬ 𝜑 → 𝜓) → (¬ 𝜓 → 𝜑)) → ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓))) | ||
| Theorem | frege46 43821 | If 𝜓 holds when 𝜑 occurs as well as when 𝜑 does not occur, then 𝜓 holds. If 𝜓 or 𝜑 occurs and if the occurrences of 𝜑 has 𝜓 as a necessary consequence, then 𝜓 takes place. Identical to pm2.6 191. Proposition 46 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
| Theorem | frege47 43822 | Deduce consequence follows from either path implied by a disjunction. If 𝜑, as well as 𝜓 is sufficient condition for 𝜒 and 𝜓 or 𝜑 takes place, then the proposition 𝜒 holds. Proposition 47 of [Frege1879] p. 48. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜓) → ((𝜓 → 𝜒) → ((𝜑 → 𝜒) → 𝜒))) | ||
| Theorem | frege48 43823 | Closed form of syllogism with internal disjunction. If 𝜑 is a sufficient condition for the occurrence of 𝜒 or 𝜓 and if 𝜒, as well as 𝜓, is a sufficient condition for 𝜃, then 𝜑 is a sufficient condition for 𝜃. See application in frege101 43935. Proposition 48 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (¬ 𝜓 → 𝜒)) → ((𝜒 → 𝜃) → ((𝜓 → 𝜃) → (𝜑 → 𝜃)))) | ||
| Theorem | frege49 43824 | Closed form of deduction with disjunction. Proposition 49 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → 𝜓) → ((𝜑 → 𝜒) → ((𝜓 → 𝜒) → 𝜒))) | ||
| Theorem | frege50 43825 | Closed form of jaoi 857. Proposition 50 of [Frege1879] p. 49. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜓) → ((¬ 𝜑 → 𝜒) → 𝜓))) | ||
| Theorem | frege51 43826 | Compare with jaod 859. Proposition 51 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜒) → (𝜑 → ((¬ 𝜓 → 𝜃) → 𝜒)))) | ||
Here we leverage df-ifp 1063 to partition a wff into two that are disjoint with the selector wff. Thus if we are given ⊢ (𝜑 ↔ if-(𝜓, 𝜒, 𝜃)) then we replace the concept (illegal in our notation ) (𝜑‘𝜓) with if-(𝜓, 𝜒, 𝜃) to reason about the values of the "function." Likewise, we replace the similarly illegal concept ∀𝜓𝜑 with (𝜒 ∧ 𝜃). | ||
| Theorem | axfrege52a 43827 | Justification for ax-frege52a 43828. (Contributed by RP, 17-Apr-2020.) |
| ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
| Axiom | ax-frege52a 43828 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which a proposition controlled by an element for which we substitute the content of 𝜑 is affirmed (in this specific case the identity logical function) and the same proposition, this time where we substituted the content of 𝜓, is denied does not take place. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) | ||
| Theorem | frege52aid 43829 | The case when the content of 𝜑 is identical with the content of 𝜓 and in which 𝜑 is affirmed and 𝜓 is denied does not take place. Identical to biimp 215. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | ||
| Theorem | frege53aid 43830 | Specialization of frege53a 43831. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → ((𝜑 ↔ 𝜓) → 𝜓)) | ||
| Theorem | frege53a 43831 | Lemma for frege55a 43839. Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (if-(𝜑, 𝜃, 𝜒) → ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜃, 𝜒))) | ||
| Theorem | axfrege54a 43832 | Justification for ax-frege54a 43833. Identical to biid 261. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 ↔ 𝜑) | ||
| Axiom | ax-frege54a 43833 | Reflexive equality of wffs. The content of 𝜑 is identical with the content of 𝜑. Part of Axiom 54 of [Frege1879] p. 50. Identical to biid 261. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ 𝜑) | ||
| Theorem | frege54cor0a 43834 | Synonym for logical equivalence. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜓 ↔ 𝜑) ↔ if-(𝜓, 𝜑, ¬ 𝜑)) | ||
| Theorem | frege54cor1a 43835 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ if-(𝜑, 𝜑, ¬ 𝜑) | ||
| Theorem | frege55aid 43836 | Lemma for frege57aid 43843. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
| Theorem | frege55lem1a 43837 | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜏 → if-(𝜓, 𝜑, ¬ 𝜑)) → (𝜏 → (𝜓 ↔ 𝜑))) | ||
| Theorem | frege55lem2a 43838 | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
| Theorem | frege55a 43839 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → if-(𝜓, 𝜑, ¬ 𝜑)) | ||
| Theorem | frege55cor1a 43840 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜓 ↔ 𝜑)) | ||
| Theorem | frege56aid 43841 | Lemma for frege57aid 43843. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) → ((𝜓 ↔ 𝜑) → (𝜑 → 𝜓))) | ||
| Theorem | frege56a 43842 | Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃))) → ((𝜓 ↔ 𝜑) → (if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)))) | ||
| Theorem | frege57aid 43843 | This is the all important formula which allows to apply Frege-style definitions and explore their consequences. A closed form of biimpri 228. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | ||
| Theorem | frege57a 43844 | Analogue of frege57aid 43843. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜓, 𝜒, 𝜃) → if-(𝜑, 𝜒, 𝜃))) | ||
| Theorem | axfrege58a 43845 | Identical to anifp 1071. Justification for ax-frege58a 43846. (Contributed by RP, 28-Mar-2020.) |
| ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
| Axiom | ax-frege58a 43846 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2068. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
| ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | ||
| Theorem | frege58acor 43847 | Lemma for frege59a 43848. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | frege59a 43848 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43784 incorrectly referenced where frege30 43803 is in the original. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (if-(𝜑, 𝜓, 𝜃) → (¬ if-(𝜑, 𝜒, 𝜏) → ¬ ((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)))) | ||
| Theorem | frege60a 43849 | Swap antecedents of ax-frege58a 43846. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜓 → (𝜒 → 𝜃)) ∧ (𝜏 → (𝜂 → 𝜁))) → (if-(𝜑, 𝜒, 𝜂) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
| Theorem | frege61a 43850 | Lemma for frege65a 43854. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜒) → 𝜃) → ((𝜓 ∧ 𝜒) → 𝜃)) | ||
| Theorem | frege62a 43851 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2662 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (if-(𝜑, 𝜓, 𝜃) → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏))) | ||
| Theorem | frege63a 43852 | Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (if-(𝜑, 𝜓, 𝜃) → (𝜂 → (((𝜓 → 𝜒) ∧ (𝜃 → 𝜏)) → if-(𝜑, 𝜒, 𝜏)))) | ||
| Theorem | frege64a 43853 | Lemma for frege65a 43854. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | ||
| Theorem | frege65a 43854 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2662 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
| Theorem | frege66a 43855 | Swap antecedents of frege65a 43854. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
| Theorem | frege67a 43856 | Lemma for frege68a 43857. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) | ||
| Theorem | frege68a 43857 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) | ||
| Theorem | axfrege52c 43858 | Justification for ax-frege52c 43859. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
| Axiom | ax-frege52c 43859 | One side of dfsbcq 3767. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
| Theorem | frege52b 43860 | The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
| Theorem | frege53b 43861 | Lemma for frege102 (via frege92 43926). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | ||
| Theorem | axfrege54c 43862 | Reflexive equality of classes. Identical to eqid 2735. Justification for ax-frege54c 43863. (Contributed by RP, 24-Dec-2019.) |
| ⊢ 𝐴 = 𝐴 | ||
| Axiom | ax-frege54c 43863 | Reflexive equality of sets (as classes). Part of Axiom 54 of [Frege1879] p. 50. Identical to eqid 2735. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ 𝐴 = 𝐴 | ||
| Theorem | frege54b 43864 | Reflexive equality of sets. The content of 𝑥 is identical with the content of 𝑥. Part of Axiom 54 of [Frege1879] p. 50. Slightly specialized version of eqid 2735. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝑥 = 𝑥 | ||
| Theorem | frege54cor1b 43865 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | ||
| Theorem | frege55lem1b 43866* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → [𝑥 / 𝑦]𝑦 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | ||
| Theorem | frege55lem2b 43867 | Lemma for frege55b 43868. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | ||
| Theorem | frege55b 43868 |
Lemma for frege57b 43870. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2756 incorporates eqcom 2742 which is stronger than this proposition which is identical to equcomi 2016. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
| Theorem | frege56b 43869 | Lemma for frege57b 43870. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) | ||
| Theorem | frege57b 43870 | Analogue of frege57aid 43843. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | ||
| Theorem | axfrege58b 43871 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2068. Justification for ax-frege58b 43872. (Contributed by RP, 28-Mar-2020.) |
| ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
| Axiom | ax-frege58b 43872 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2068. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
| Theorem | frege58bid 43873 | If ∀𝑥𝜑 is affirmed, 𝜑 cannot be denied. Identical to sp 2183. See ax-frege58b 43872 and frege58c 43892 for versions which more closely track the original. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | frege58bcor 43874 | Lemma for frege59b 43875. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
| Theorem | frege59b 43875 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43784 incorrectly referenced where frege30 43803 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (¬ [𝑦 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | frege60b 43876 | Swap antecedents of ax-frege58b 43872. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝑦 / 𝑥]𝜓 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege61b 43877 | Lemma for frege65b 43881. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | ||
| Theorem | frege62b 43878 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2662 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | ||
| Theorem | frege63b 43879 | Lemma for frege91 43925. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege64b 43880 | Lemma for frege65b 43881. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | ||
| Theorem | frege65b 43881 |
A kind of Aristotelian inference. This judgement replaces the mode of
inference barbara 2662 when the minor premise has a general context.
Proposition 65 of [Frege1879] p. 53.
In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : ⊢ (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege66b 43882 | Swap antecedents of frege65b 43881. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | ||
| Theorem | frege67b 43883 | Lemma for frege68b 43884. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | frege68b 43884 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
| Theorem | frege53c 43885 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
| Theorem | frege54cor1c 43886* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
| ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
| Theorem | frege55lem1c 43887* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
| Theorem | frege55lem2c 43888* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
| Theorem | frege55c 43889 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
| Theorem | frege56c 43890* | Lemma for frege57c 43891. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
| Theorem | frege57c 43891* | Swap order of implication in ax-frege52c 43859. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | frege58c 43892 | Principle related to sp 2183. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | frege59c 43893 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43784 incorrectly referenced where frege30 43803 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | frege60c 43894 | Swap antecedents of frege58c 43892. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege61c 43895 | Lemma for frege65c 43899. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | frege62c 43896 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2662 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥]𝜓)) | ||
| Theorem | frege63c 43897 | Analogue of frege63b 43879. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege64c 43898 | Lemma for frege65c 43899. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege65c 43899 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2662 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege66c 43900 | Swap antecedents of frege65c 43899. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |