Home | Metamath
Proof Explorer Theorem List (p. 439 of 458) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28801) |
Hilbert Space Explorer
(28802-30324) |
Users' Mathboxes
(30325-45725) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | smfco 43801 | The composition of a Borel sigma-measurable function with a sigma-measurable function, is sigma-measurable. Proposition 121E (g) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐻 ∈ (SMblFn‘𝐵)) ⇒ ⊢ (𝜑 → (𝐻 ∘ 𝐹) ∈ (SMblFn‘𝑆)) | ||
Theorem | smfneg 43802* | The negative of a sigma-measurable function is measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ -𝐵) ∈ (SMblFn‘𝑆)) | ||
Theorem | smffmpt 43803* | A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) | ||
Theorem | smflim2 43804* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 43777 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfpimcclem 43805* | Lemma for smfpimcc 43806 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 ∈ 𝑉 & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑛 ∈ 𝑍 ↦ {𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) → (𝐶‘𝑦) ∈ 𝑦) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝐶‘{𝑠 ∈ 𝑆 ∣ (◡(𝐹‘𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹‘𝑛))})) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
Theorem | smfpimcc 43806* | Given a countable set of sigma-measurable functions, and a Borel set 𝐴 there exists a choice function ℎ that, for each measurable function, chooses a measurable set that, when intersected with the function's domain, gives the preimage of 𝐴. This is a generalization of the observation at the beginning of the proof of Proposition 121F of [Fremlin1] p. 39 . The statement would also be provable for uncountable sets, but in most cases it will suffice to consider the countable case, and only the axiom of countable choice will be needed. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐵 = (SalGen‘𝐽) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃ℎ(ℎ:𝑍⟶𝑆 ∧ ∀𝑛 ∈ 𝑍 (◡(𝐹‘𝑛) “ 𝐴) = ((ℎ‘𝑛) ∩ dom (𝐹‘𝑛)))) | ||
Theorem | issmfle2d 43807* | A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑎𝜑 & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) & ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) & ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimmpt 43808* | The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). 𝐴 can contain 𝑚 as a free variable, in other words it can be thought as an indexed collection 𝐴(𝑚). 𝐵 can be thought as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (𝑚 ∈ 𝑍 ↦ 𝐵) ∈ dom ⇝ } & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ ( ⇝ ‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsuplem1 43809* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐻:𝑍⟶𝑆) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (◡(𝐹‘𝑛) “ (-∞(,]𝐴)) = ((𝐻‘𝑛) ∩ dom (𝐹‘𝑛))) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfsuplem2 43810* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) & ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → (◡𝐺 “ (-∞(,]𝐴)) ∈ (𝑆 ↾t 𝐷)) | ||
Theorem | smfsuplem3 43811* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsup 43812* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 ((𝐹‘𝑛)‘𝑥) ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsupmpt 43813* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝐵 ≤ 𝑦} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfsupxr 43814* | The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < ) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ sup(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ*, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinflem 43815* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinf 43816* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 dom (𝐹‘𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ ((𝐹‘𝑛)‘𝑥)} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfinfmpt 43817* | The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∩ 𝑛 ∈ 𝑍 𝐴 ∣ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑍 𝑦 ≤ 𝐵} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ inf(ran (𝑛 ∈ 𝑍 ↦ 𝐵), ℝ, < )) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsuplem1 43818* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) ⇒ ⊢ (𝜑 → dom (𝐻‘𝐾) ⊆ dom (𝐹‘𝐾)) | ||
Theorem | smflimsuplem2 43819* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑛 ∈ 𝑍) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → 𝑋 ∈ dom (𝐻‘𝑛)) | ||
Theorem | smflimsuplem3 43820* | The limit of the (𝐻‘𝑛) functions is sigma-measurable. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ ∪ 𝑘 ∈ 𝑍 ∩ 𝑛 ∈ (ℤ≥‘𝑘)dom (𝐻‘𝑛) ∣ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ } ↦ ( ⇝ ‘(𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)))) ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsuplem4 43821* | If 𝐻 converges, the lim sup of 𝐹 is real. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑥 ∈ ∩ 𝑛 ∈ (ℤ≥‘𝑁)dom (𝐻‘𝑛)) & ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑥)) ∈ dom ⇝ ) ⇒ ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ) | ||
Theorem | smflimsuplem5 43822* | 𝐻 converges to the superior limit of 𝐹. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) | ||
Theorem | smflimsuplem6 43823* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑚𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) & ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | ||
Theorem | smflimsuplem7 43824* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑘 ∈ (ℤ≥‘𝑛)dom (𝐻‘𝑘) ∣ (𝑘 ∈ 𝑍 ↦ ((𝐻‘𝑘)‘𝑥)) ∈ dom ⇝ }) | ||
Theorem | smflimsuplem8 43825* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) & ⊢ 𝐸 = (𝑘 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑘)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) & ⊢ 𝐻 = (𝑘 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑘) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑘) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsup 43826* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smflimsupmpt 43827* | The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim sup‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminflem 43828* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminf 43829* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑚𝐹 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥))) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | smfliminfmpt 43830* | The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . 𝐴 can contain 𝑚 as a free variable, in other words it can be thought of as an indexed collection 𝐴(𝑚). 𝐵 can be thought of as a collection with two indices 𝐵(𝑚, 𝑥). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑚𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) & ⊢ 𝐷 = {𝑥 ∈ ∪ 𝑛 ∈ 𝑍 ∩ 𝑚 ∈ (ℤ≥‘𝑛)𝐴 ∣ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵)) ∈ ℝ} & ⊢ 𝐺 = (𝑥 ∈ 𝐷 ↦ (lim inf‘(𝑚 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (SMblFn‘𝑆)) | ||
Theorem | sigarval 43831* | Define the signed area by treating complex numbers as vectors with two components. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = (ℑ‘((∗‘𝐴) · 𝐵))) | ||
Theorem | sigarim 43832* | Signed area takes value in reals. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) ∈ ℝ) | ||
Theorem | sigarac 43833* | Signed area is anticommutative. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) | ||
Theorem | sigaraf 43834* | Signed area is additive by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) + (𝐶𝐺𝐵))) | ||
Theorem | sigarmf 43835* | Signed area is additive (with respect to subtraction) by the first argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺𝐵) = ((𝐴𝐺𝐵) − (𝐶𝐺𝐵))) | ||
Theorem | sigaras 43836* | Signed area is additive by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 + 𝐶)) = ((𝐴𝐺𝐵) + (𝐴𝐺𝐶))) | ||
Theorem | sigarms 43837* | Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴𝐺(𝐵 − 𝐶)) = ((𝐴𝐺𝐵) − (𝐴𝐺𝐶))) | ||
Theorem | sigarls 43838* | Signed area is linear by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℝ) → (𝐴𝐺(𝐵 · 𝐶)) = ((𝐴𝐺𝐵) · 𝐶)) | ||
Theorem | sigarid 43839* | Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0) | ||
Theorem | sigarexp 43840* | Expand the signed area formula by linearity. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = (((𝐴𝐺𝐵) − (𝐴𝐺𝐶)) − (𝐶𝐺𝐵))) | ||
Theorem | sigarperm 43841* | Signed area (𝐴 − 𝐶)𝐺(𝐵 − 𝐶) acts as a double area of a triangle 𝐴𝐵𝐶. Here we prove that cyclically permuting the vertices doesn't change the area. (Contributed by Saveliy Skresanov, 20-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴))) | ||
Theorem | sigardiv 43842* | If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐶 = 𝐴) & ⊢ (𝜑 → ((𝐵 − 𝐴)𝐺(𝐶 − 𝐴)) = 0) ⇒ ⊢ (𝜑 → ((𝐵 − 𝐴) / (𝐶 − 𝐴)) ∈ ℝ) | ||
Theorem | sigarimcd 43843* | Signed area takes value in complex numbers. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) ⇒ ⊢ (𝜑 → (𝐴𝐺𝐵) ∈ ℂ) | ||
Theorem | sigariz 43844* | If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) & ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) ⇒ ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) | ||
Theorem | sigarcol 43845* | Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) | ||
Theorem | sharhght 43846* | Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐴)𝐺(𝐷 − 𝐴)) · (𝐵 − 𝐷)) = (((𝐶 − 𝐵)𝐺(𝐷 − 𝐵)) · (𝐴 − 𝐷))) | ||
Theorem | sigaradd 43847* | Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐵 − 𝐶)𝐺(𝐴 − 𝐶)) − ((𝐷 − 𝐶)𝐺(𝐴 − 𝐶))) = ((𝐵 − 𝐶)𝐺(𝐷 − 𝐶))) | ||
Theorem | cevathlem1 43848 | Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) & ⊢ (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0)) & ⊢ (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾))) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾)) | ||
Theorem | cevathlem2 43849* | Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) · (𝐵 − 𝐷)) = (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) · (𝐷 − 𝐶))) | ||
Theorem | cevath 43850* |
Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹,
𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴
correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹
intersect at one point 𝑂. Then triangle's sides are
partitioned
into segments and their lengths satisfy a certain identity. Here we
obtain a bit stronger version by using complex numbers themselves
instead of their absolute values.
The proof goes by applying cevathlem2 43849 three times and then using cevathlem1 43848 to multiply obtained identities and prove the theorem. In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 43845. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐹) · (𝐶 − 𝐸)) · (𝐵 − 𝐷)) = (((𝐹 − 𝐵) · (𝐸 − 𝐴)) · (𝐷 − 𝐶))) | ||
Theorem | simpcntrab 43851 | The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) | ||
Theorem | hirstL-ax3 43852 | The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜑)) | ||
Theorem | ax3h 43853 | Recover ax-3 8 from hirstL-ax3 43852. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
Theorem | aibandbiaiffaiffb 43854 | A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | aibandbiaiaiffb 43855 | A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | ||
Theorem | notatnand 43856 | Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
Theorem | aistia 43857 | Given a is equivalent to ⊤, there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) ⇒ ⊢ 𝜑 | ||
Theorem | aisfina 43858 | Given a is equivalent to ⊥, there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ ⊥) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | bothtbothsame 43859 | Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | bothfbothsame 43860 | Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | aiffbbtat 43861 | Given a is equivalent to b, b is equivalent to ⊤ there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
Theorem | aisbbisfaisf 43862 | Given a is equivalent to b, b is equivalent to ⊥ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | axorbtnotaiffb 43863 | Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1504 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
Theorem | aiffnbandciffatnotciffb 43864 | Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ↔ ¬ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ ¬ (𝜒 ↔ 𝜓) | ||
Theorem | axorbciffatcxorb 43865 | Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
⊢ (𝜑 ⊻ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ (𝜒 ⊻ 𝜓) | ||
Theorem | aibnbna 43866 | Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ ¬ 𝜑 | ||
Theorem | aibnbaif 43867 | Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | aiffbtbat 43868 | Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (⊤ ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
Theorem | astbstanbst 43869 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) | ||
Theorem | aistbistaandb 43870 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ∧ 𝜓) | ||
Theorem | aisbnaxb 43871 | Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜑 ⊻ 𝜓) | ||
Theorem | atbiffatnnb 43872 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
Theorem | bisaiaisb 43873 | Application of bicom1 with a, b swapped. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | ||
Theorem | atbiffatnnbalt 43874 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
Theorem | abnotbtaxb 43875 | Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | abnotataxb 43876 | Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ ¬ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | conimpf 43877 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | conimpfalt 43878 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.) |
⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
Theorem | aistbisfiaxb 43879 | Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | aisfbistiaxb 43880 | Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
Theorem | aifftbifffaibif 43881 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 → 𝜓) ↔ ⊥) | ||
Theorem | aifftbifffaibifff 43882 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) | ||
Theorem | atnaiana 43883 | Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) | ||
Theorem | ainaiaandna 43884 | Given a, a implies it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ 𝜑 ⇒ ⊢ (𝜑 → ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑))) | ||
Theorem | abcdta 43885 | Given (((a and b) and c) and d), there exists a proof for a. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜑 | ||
Theorem | abcdtb 43886 | Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜓 | ||
Theorem | abcdtc 43887 | Given (((a and b) and c) and d), there exists a proof for c. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜒 | ||
Theorem | abcdtd 43888 | Given (((a and b) and c) and d), there exists a proof for d. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | abciffcbatnabciffncba 43889 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
Theorem | abciffcbatnabciffncbai 43890 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ⇒ ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
Theorem | nabctnabc 43891 | not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) | ||
Theorem | jabtaib 43892 | For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.) |
⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | onenotinotbothi 43893 | From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
Theorem | twonotinotbothi 43894 | From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
⊢ ¬ (𝜑 → 𝜓) & ⊢ ¬ (𝜒 → 𝜃) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
Theorem | clifte 43895 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ (𝜑 ∧ ¬ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
Theorem | cliftet 43896 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ (𝜑 ∧ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
Theorem | clifteta 43897 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
Theorem | cliftetb 43898 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
⊢ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
Theorem | confun 43899 | Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ 𝜑 & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜃 ↔ 𝜑)) | ||
Theorem | confun2 43900 | Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → ¬ (𝜓 → (𝜓 ∧ ¬ 𝜓))) & ⊢ ((𝜓 → 𝜑) → ((𝜓 → 𝜑) → 𝜑)) ⇒ ⊢ (𝜓 → (¬ (𝜓 → (𝜓 ∧ ¬ 𝜓)) ↔ (𝜓 → 𝜑))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |