| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2210 and 19.21v 1940. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1911 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1911 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1864 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem is referenced by: sbequ1 2251 ax13lem2 2376 reusv1 5333 zfpair 5357 axprlem3 5361 fliftfun 7246 isofrlem 7274 funcnvuni 7862 f1oweALT 7904 findcard 9073 findcard2 9074 dfac5lem4 10017 dfac5lem4OLD 10019 dfac5 10020 zorn2lem4 10390 genpcl 10899 psslinpr 10922 ltaddpr 10925 ltexprlem3 10929 suplem1pr 10943 uzwo 12809 seqf1o 13950 ramcl 16941 alexsubALTlem3 23964 bj-dvelimdv1 36896 intabssd 43622 frege81 44047 frege95 44061 frege123 44089 frege130 44096 truniALT 44644 ggen31 44648 onfrALTlem2 44649 gen21 44722 gen22 44725 ggen22 44726 relpfrlem 45056 |
| Copyright terms: Public domain | W3C validator |