Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2200 and 19.21v 1942. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1913 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1866 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem is referenced by: sbequ1 2240 ax13lem2 2376 reusv1 5320 zfpair 5344 fliftfun 7183 isofrlem 7211 funcnvuni 7778 f1oweALT 7815 findcard 8946 findcard2 8947 findcard2OLD 9056 dfac5lem4 9882 dfac5 9884 zorn2lem4 10255 genpcl 10764 psslinpr 10787 ltaddpr 10790 ltexprlem3 10794 suplem1pr 10808 uzwo 12651 seqf1o 13764 ramcl 16730 alexsubALTlem3 23200 bj-dvelimdv1 35036 intabssd 41126 frege81 41552 frege95 41566 frege123 41594 frege130 41601 truniALT 42161 ggen31 42165 onfrALTlem2 42166 gen21 42239 gen22 42242 ggen22 42243 |
Copyright terms: Public domain | W3C validator |