| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1863 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: sbequ1 2249 ax13lem2 2374 reusv1 5347 zfpair 5371 axprlem3 5375 fliftfun 7269 isofrlem 7297 funcnvuni 7888 f1oweALT 7930 findcard 9104 findcard2 9105 dfac5lem4 10055 dfac5lem4OLD 10057 dfac5 10058 zorn2lem4 10428 genpcl 10937 psslinpr 10960 ltaddpr 10963 ltexprlem3 10967 suplem1pr 10981 uzwo 12846 seqf1o 13984 ramcl 16976 alexsubALTlem3 23969 bj-dvelimdv1 36833 intabssd 43501 frege81 43926 frege95 43940 frege123 43968 frege130 43975 truniALT 44524 ggen31 44528 onfrALTlem2 44529 gen21 44602 gen22 44605 ggen22 44606 relpfrlem 44936 |
| Copyright terms: Public domain | W3C validator |