![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1938. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1909 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1862 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem is referenced by: sbequ1 2249 ax13lem2 2384 reusv1 5415 zfpair 5439 fliftfun 7348 isofrlem 7376 funcnvuni 7972 f1oweALT 8013 findcard 9229 findcard2 9230 dfac5lem4 10195 dfac5lem4OLD 10197 dfac5 10198 zorn2lem4 10568 genpcl 11077 psslinpr 11100 ltaddpr 11103 ltexprlem3 11107 suplem1pr 11121 uzwo 12976 seqf1o 14094 ramcl 17076 alexsubALTlem3 24078 bj-dvelimdv1 36818 intabssd 43481 frege81 43906 frege95 43920 frege123 43948 frege130 43955 truniALT 44512 ggen31 44516 onfrALTlem2 44517 gen21 44590 gen22 44593 ggen22 44594 |
Copyright terms: Public domain | W3C validator |