![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2205 and 19.21v 1937. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1908 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1908 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1861 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem is referenced by: sbequ1 2246 ax13lem2 2379 reusv1 5403 zfpair 5427 axprlem3 5431 fliftfun 7332 isofrlem 7360 funcnvuni 7955 f1oweALT 7996 findcard 9202 findcard2 9203 dfac5lem4 10164 dfac5lem4OLD 10166 dfac5 10167 zorn2lem4 10537 genpcl 11046 psslinpr 11069 ltaddpr 11072 ltexprlem3 11076 suplem1pr 11090 uzwo 12951 seqf1o 14081 ramcl 17063 alexsubALTlem3 24073 bj-dvelimdv1 36835 intabssd 43509 frege81 43934 frege95 43948 frege123 43976 frege130 43983 truniALT 44539 ggen31 44543 onfrALTlem2 44544 gen21 44617 gen22 44620 ggen22 44621 |
Copyright terms: Public domain | W3C validator |