| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1863 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: sbequ1 2249 ax13lem2 2381 reusv1 5372 zfpair 5396 axprlem3 5400 fliftfun 7310 isofrlem 7338 funcnvuni 7933 f1oweALT 7976 findcard 9182 findcard2 9183 dfac5lem4 10145 dfac5lem4OLD 10147 dfac5 10148 zorn2lem4 10518 genpcl 11027 psslinpr 11050 ltaddpr 11053 ltexprlem3 11057 suplem1pr 11071 uzwo 12932 seqf1o 14066 ramcl 17054 alexsubALTlem3 23992 bj-dvelimdv1 36875 intabssd 43510 frege81 43935 frege95 43949 frege123 43977 frege130 43984 truniALT 44533 ggen31 44537 onfrALTlem2 44538 gen21 44611 gen22 44614 ggen22 44615 relpfrlem 44945 |
| Copyright terms: Public domain | W3C validator |