| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1863 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: sbequ1 2249 ax13lem2 2374 reusv1 5336 zfpair 5360 axprlem3 5364 fliftfun 7249 isofrlem 7277 funcnvuni 7865 f1oweALT 7907 findcard 9077 findcard2 9078 dfac5lem4 10020 dfac5lem4OLD 10022 dfac5 10023 zorn2lem4 10393 genpcl 10902 psslinpr 10925 ltaddpr 10928 ltexprlem3 10932 suplem1pr 10946 uzwo 12812 seqf1o 13950 ramcl 16941 alexsubALTlem3 23934 bj-dvelimdv1 36836 intabssd 43502 frege81 43927 frege95 43941 frege123 43969 frege130 43976 truniALT 44525 ggen31 44529 onfrALTlem2 44530 gen21 44603 gen22 44606 ggen22 44607 relpfrlem 44937 |
| Copyright terms: Public domain | W3C validator |