![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2199 and 19.21v 1941. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1912 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1912 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1865 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem is referenced by: sbequ1 2239 ax13lem2 2374 reusv1 5395 zfpair 5419 fliftfun 7312 isofrlem 7340 funcnvuni 7925 f1oweALT 7962 findcard 9166 findcard2 9167 findcard2OLD 9287 dfac5lem4 10124 dfac5 10126 zorn2lem4 10497 genpcl 11006 psslinpr 11029 ltaddpr 11032 ltexprlem3 11036 suplem1pr 11050 uzwo 12900 seqf1o 14014 ramcl 16967 alexsubALTlem3 23774 bj-dvelimdv1 36035 intabssd 42573 frege81 42998 frege95 43012 frege123 43040 frege130 43047 truniALT 43605 ggen31 43609 onfrALTlem2 43610 gen21 43683 gen22 43686 ggen22 43687 |
Copyright terms: Public domain | W3C validator |