![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2134 and 19.21v 1898. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1869 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1869 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1826 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1758 ax-4 1772 ax-5 1869 |
This theorem is referenced by: sbequ1 2174 ax13lem2 2303 moexexvw 2656 reusv1 5145 zfpair 5172 fliftfun 6882 isofrlem 6910 funcnvuni 7445 f1oweALT 7478 findcard 8544 findcard2 8545 dfac5lem4 9338 dfac5 9340 zorn2lem4 9711 genpcl 10220 psslinpr 10243 ltaddpr 10246 ltexprlem3 10250 suplem1pr 10264 uzwo 12118 seqf1o 13219 ramcl 16211 alexsubALTlem3 22351 bj-dvelimdv1 33607 intabssd 39277 frege81 39598 frege95 39612 frege123 39640 frege130 39647 truniALT 40238 ggen31 40242 onfrALTlem2 40243 gen21 40316 gen22 40319 ggen22 40320 |
Copyright terms: Public domain | W3C validator |