| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version | ||
| Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21v 1939. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-5 1910 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | alrimdh 1863 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem is referenced by: sbequ1 2249 ax13lem2 2374 reusv1 5352 zfpair 5376 axprlem3 5380 fliftfun 7287 isofrlem 7315 funcnvuni 7908 f1oweALT 7951 findcard 9127 findcard2 9128 dfac5lem4 10079 dfac5lem4OLD 10081 dfac5 10082 zorn2lem4 10452 genpcl 10961 psslinpr 10984 ltaddpr 10987 ltexprlem3 10991 suplem1pr 11005 uzwo 12870 seqf1o 14008 ramcl 17000 alexsubALTlem3 23936 bj-dvelimdv1 36840 intabssd 43508 frege81 43933 frege95 43947 frege123 43975 frege130 43982 truniALT 44531 ggen31 44535 onfrALTlem2 44536 gen21 44609 gen22 44612 ggen22 44613 relpfrlem 44943 |
| Copyright terms: Public domain | W3C validator |