Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimdv | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2203 and 19.21v 1943. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
alrimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alrimdv | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-5 1914 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | alrimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | alrimdh 1867 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem is referenced by: sbequ1 2243 ax13lem2 2376 reusv1 5315 zfpair 5339 fliftfun 7163 isofrlem 7191 funcnvuni 7752 f1oweALT 7788 findcard 8908 findcard2 8909 findcard2OLD 8986 dfac5lem4 9813 dfac5 9815 zorn2lem4 10186 genpcl 10695 psslinpr 10718 ltaddpr 10721 ltexprlem3 10725 suplem1pr 10739 uzwo 12580 seqf1o 13692 ramcl 16658 alexsubALTlem3 23108 bj-dvelimdv1 34963 intabssd 41024 frege81 41441 frege95 41455 frege123 41483 frege130 41490 truniALT 42050 ggen31 42054 onfrALTlem2 42055 gen21 42128 gen22 42131 ggen22 42132 |
Copyright terms: Public domain | W3C validator |