Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exinst Structured version   Visualization version   GIF version

Theorem exinst 39785
Description: Existential Instantiation. Virtual deduction form of exlimexi 39676. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
exinst.1 (𝜓 → ∀𝑥𝜓)
exinst.2 (   𝑥𝜑   ,   𝜑   ▶   𝜓   )
Assertion
Ref Expression
exinst (∃𝑥𝜑𝜓)

Proof of Theorem exinst
StepHypRef Expression
1 exinst.1 . 2 (𝜓 → ∀𝑥𝜓)
2 exinst.2 . . 3 (   𝑥𝜑   ,   𝜑   ▶   𝜓   )
32dfvd2i 39737 . 2 (∃𝑥𝜑 → (𝜑𝜓))
41, 3exlimexi 39676 1 (∃𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1599  wex 1823  (   wvd2 39729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824  df-nf 1828  df-vd2 39730
This theorem is referenced by:  sb5ALTVD  40074
  Copyright terms: Public domain W3C validator