Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exinst | Structured version Visualization version GIF version |
Description: Existential Instantiation. Virtual deduction form of exlimexi 42144. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
exinst.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
exinst.2 | ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
exinst | ⊢ (∃𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exinst.1 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | exinst.2 | . . 3 ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) | |
3 | 2 | dfvd2i 42205 | . 2 ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) |
4 | 1, 3 | exlimexi 42144 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 ( wvd2 42197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-vd2 42198 |
This theorem is referenced by: sb5ALTVD 42533 |
Copyright terms: Public domain | W3C validator |