| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exinst | Structured version Visualization version GIF version | ||
| Description: Existential Instantiation. Virtual deduction form of exlimexi 44477. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| exinst.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| exinst.2 | ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) |
| Ref | Expression |
|---|---|
| exinst | ⊢ (∃𝑥𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exinst.1 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | exinst.2 | . . 3 ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) | |
| 3 | 2 | dfvd2i 44538 | . 2 ⊢ (∃𝑥𝜑 → (𝜑 → 𝜓)) |
| 4 | 1, 3 | exlimexi 44477 | 1 ⊢ (∃𝑥𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 ( wvd2 44530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-vd2 44531 |
| This theorem is referenced by: sb5ALTVD 44866 |
| Copyright terms: Public domain | W3C validator |