Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ibdr Structured version   Visualization version   GIF version

Theorem ibdr 36872
Description: Reverse of ibd 268. (Contributed by Rodolfo Medina, 30-Sep-2010.)
Hypothesis
Ref Expression
ibdr.1 (𝜑 → (𝜒 → (𝜓𝜒)))
Assertion
Ref Expression
ibdr (𝜑 → (𝜒𝜓))

Proof of Theorem ibdr
StepHypRef Expression
1 ibdr.1 . . 3 (𝜑 → (𝜒 → (𝜓𝜒)))
21bicomdd 36868 . 2 (𝜑 → (𝜒 → (𝜒𝜓)))
32ibd 268 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator