Mathbox for Rodolfo Medina < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem100 Structured version   Visualization version   GIF version

Theorem prtlem100 35545
 Description: Lemma for prter3 35568. (Contributed by Rodolfo Medina, 19-Oct-2010.)
Assertion
Ref Expression
prtlem100 (∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))

Proof of Theorem prtlem100
StepHypRef Expression
1 anass 469 . . 3 (((𝑥𝐴𝑥 ≠ ∅) ∧ (𝐵𝑥𝜑)) ↔ (𝑥𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑))))
2 eldifsn 4626 . . . 4 (𝑥 ∈ (𝐴 ∖ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
32anbi1i 623 . . 3 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵𝑥𝜑)) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ (𝐵𝑥𝜑)))
4 ne0i 4220 . . . . . . 7 (𝐵𝑥𝑥 ≠ ∅)
54pm4.71ri 561 . . . . . 6 (𝐵𝑥 ↔ (𝑥 ≠ ∅ ∧ 𝐵𝑥))
65anbi1i 623 . . . . 5 ((𝐵𝑥𝜑) ↔ ((𝑥 ≠ ∅ ∧ 𝐵𝑥) ∧ 𝜑))
7 anass 469 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝐵𝑥) ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑)))
86, 7bitri 276 . . . 4 ((𝐵𝑥𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑)))
98anbi2i 622 . . 3 ((𝑥𝐴 ∧ (𝐵𝑥𝜑)) ↔ (𝑥𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑))))
101, 3, 93bitr4ri 305 . 2 ((𝑥𝐴 ∧ (𝐵𝑥𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵𝑥𝜑)))
1110rexbii2 3209 1 (∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396   ∈ wcel 2081   ≠ wne 2984  ∃wrex 3106   ∖ cdif 3856  ∅c0 4211  {csn 4472 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-rex 3111  df-v 3439  df-dif 3862  df-nul 4212  df-sn 4473 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator