![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem100 | Structured version Visualization version GIF version |
Description: Lemma for prter3 38263. (Contributed by Rodolfo Medina, 19-Oct-2010.) |
Ref | Expression |
---|---|
prtlem100 | ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 468 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)))) | |
2 | eldifsn 4785 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅)) | |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
4 | ne0i 4329 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑥 → 𝑥 ≠ ∅) | |
5 | 4 | pm4.71ri 560 | . . . . . 6 ⊢ (𝐵 ∈ 𝑥 ↔ (𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥)) |
6 | 5 | anbi1i 623 | . . . . 5 ⊢ ((𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ((𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥) ∧ 𝜑)) |
7 | anass 468 | . . . . 5 ⊢ (((𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥) ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) | |
8 | 6, 7 | bitri 275 | . . . 4 ⊢ ((𝐵 ∈ 𝑥 ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
9 | 8 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)))) |
10 | 1, 3, 9 | 3bitr4ri 304 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
11 | 10 | rexbii2 3084 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 ∖ cdif 3940 ∅c0 4317 {csn 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rex 3065 df-v 3470 df-dif 3946 df-nul 4318 df-sn 4624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |