![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem100 | Structured version Visualization version GIF version |
Description: Lemma for prter3 35568. (Contributed by Rodolfo Medina, 19-Oct-2010.) |
Ref | Expression |
---|---|
prtlem100 | ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 469 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)))) | |
2 | eldifsn 4626 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ {∅}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅)) | |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ ∅) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
4 | ne0i 4220 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑥 → 𝑥 ≠ ∅) | |
5 | 4 | pm4.71ri 561 | . . . . . 6 ⊢ (𝐵 ∈ 𝑥 ↔ (𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥)) |
6 | 5 | anbi1i 623 | . . . . 5 ⊢ ((𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ((𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥) ∧ 𝜑)) |
7 | anass 469 | . . . . 5 ⊢ (((𝑥 ≠ ∅ ∧ 𝐵 ∈ 𝑥) ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) | |
8 | 6, 7 | bitri 276 | . . . 4 ⊢ ((𝐵 ∈ 𝑥 ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
9 | 8 | anbi2i 622 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)))) |
10 | 1, 3, 9 | 3bitr4ri 305 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵 ∈ 𝑥 ∧ 𝜑))) |
11 | 10 | rexbii2 3209 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵 ∈ 𝑥 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 ∖ cdif 3856 ∅c0 4211 {csn 4472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-rex 3111 df-v 3439 df-dif 3862 df-nul 4212 df-sn 4473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |