Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem100 Structured version   Visualization version   GIF version

Theorem prtlem100 37371
Description: Lemma for prter3 37394. (Contributed by Rodolfo Medina, 19-Oct-2010.)
Assertion
Ref Expression
prtlem100 (∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))

Proof of Theorem prtlem100
StepHypRef Expression
1 anass 470 . . 3 (((𝑥𝐴𝑥 ≠ ∅) ∧ (𝐵𝑥𝜑)) ↔ (𝑥𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑))))
2 eldifsn 4751 . . . 4 (𝑥 ∈ (𝐴 ∖ {∅}) ↔ (𝑥𝐴𝑥 ≠ ∅))
32anbi1i 625 . . 3 ((𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵𝑥𝜑)) ↔ ((𝑥𝐴𝑥 ≠ ∅) ∧ (𝐵𝑥𝜑)))
4 ne0i 4298 . . . . . . 7 (𝐵𝑥𝑥 ≠ ∅)
54pm4.71ri 562 . . . . . 6 (𝐵𝑥 ↔ (𝑥 ≠ ∅ ∧ 𝐵𝑥))
65anbi1i 625 . . . . 5 ((𝐵𝑥𝜑) ↔ ((𝑥 ≠ ∅ ∧ 𝐵𝑥) ∧ 𝜑))
7 anass 470 . . . . 5 (((𝑥 ≠ ∅ ∧ 𝐵𝑥) ∧ 𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑)))
86, 7bitri 275 . . . 4 ((𝐵𝑥𝜑) ↔ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑)))
98anbi2i 624 . . 3 ((𝑥𝐴 ∧ (𝐵𝑥𝜑)) ↔ (𝑥𝐴 ∧ (𝑥 ≠ ∅ ∧ (𝐵𝑥𝜑))))
101, 3, 93bitr4ri 304 . 2 ((𝑥𝐴 ∧ (𝐵𝑥𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ {∅}) ∧ (𝐵𝑥𝜑)))
1110rexbii2 3090 1 (∃𝑥𝐴 (𝐵𝑥𝜑) ↔ ∃𝑥 ∈ (𝐴 ∖ {∅})(𝐵𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107  wne 2940  wrex 3070  cdif 3911  c0 4286  {csn 4590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-rex 3071  df-v 3449  df-dif 3917  df-nul 4287  df-sn 4591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator