MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-imim1 Structured version   Visualization version   GIF version

Theorem impsingle-imim1 1646
Description: Derivation of impsingle-imim1 (imim1 83) from ax-mp 5 and impsingle 1635. It is step 29 in Lukasiewicz. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-imim1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem impsingle-imim1
StepHypRef Expression
1 impsingle-step21 1643 . 2 ((((𝜑𝜒) → 𝜓) → 𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
2 impsingle-step25 1645 . . . 4 ((𝜑𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓))
3 impsingle-step25 1645 . . . 4 (((𝜑𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓)) → ((((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))) → (((𝜑𝜒) → 𝜓) → 𝜓)) → (((𝜑𝜒) → 𝜓) → 𝜓)))
42, 3ax-mp 5 . . 3 ((((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))) → (((𝜑𝜒) → 𝜓) → 𝜓)) → (((𝜑𝜒) → 𝜓) → 𝜓))
5 impsingle-step21 1643 . . 3 (((((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))) → (((𝜑𝜒) → 𝜓) → 𝜓)) → (((𝜑𝜒) → 𝜓) → 𝜓)) → (((((𝜑𝜒) → 𝜓) → 𝜓) → ((𝜓𝜒) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))))
64, 5ax-mp 5 . 2 (((((𝜑𝜒) → 𝜓) → 𝜓) → ((𝜓𝜒) → (𝜑𝜒))) → ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒))))
71, 6ax-mp 5 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator