MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-peirce Structured version   Visualization version   GIF version

Theorem impsingle-peirce 1647
Description: Derivation of impsingle-peirce (peirce 205) from ax-mp 5 and impsingle 1635. It is step 28 in Lukasiewicz. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-peirce (((𝜑𝜓) → 𝜑) → 𝜑)

Proof of Theorem impsingle-peirce
StepHypRef Expression
1 impsingle-step22 1644 . 2 (𝜑𝜑)
2 impsingle-step25 1645 . 2 ((𝜑𝜑) → (((𝜑𝜓) → 𝜑) → 𝜑))
31, 2ax-mp 5 1 (((𝜑𝜓) → 𝜑) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator