MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step21 Structured version   Visualization version   GIF version

Theorem impsingle-step21 1643
Description: Derivation of impsingle-step21 from ax-mp 5 and impsingle 1635. It is used as a lemma in the proof of imim1 83 from impsingle 1635. It is Step 21 in Lukasiewicz, where it appears as 'CCCCprqqCCqrCpr' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step21 ((((𝜑𝜓) → 𝜒) → 𝜒) → ((𝜒𝜓) → (𝜑𝜓)))

Proof of Theorem impsingle-step21
StepHypRef Expression
1 impsingle-step15 1639 . 2 (((𝜒 → (𝜑𝜓)) → (𝜑𝜓)) → ((𝜒𝜓) → (𝜑𝜓)))
2 impsingle-step20 1642 . 2 ((((𝜒 → (𝜑𝜓)) → (𝜑𝜓)) → ((𝜒𝜓) → (𝜑𝜓))) → ((((𝜑𝜓) → 𝜒) → 𝜒) → ((𝜒𝜓) → (𝜑𝜓))))
31, 2ax-mp 5 1 ((((𝜑𝜓) → 𝜒) → 𝜒) → ((𝜒𝜓) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-imim1  1646
  Copyright terms: Public domain W3C validator