Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impsingle-step25 | Structured version Visualization version GIF version |
Description: Derivation of impsingle-step25 from ax-mp 5 and impsingle 1635. It is used as a lemma in the proof of imim1 83 from impsingle 1635. It is Step 25 in Lukasiewicz, where it appears as 'CCpqCCCprqq' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
impsingle-step25 | ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impsingle-step22 1644 | . . . 4 ⊢ ((((𝜑 → 𝜒) → 𝜓) → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | |
2 | impsingle-step20 1642 | . . . 4 ⊢ (((((𝜑 → 𝜒) → 𝜓) → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → (((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
4 | impsingle-step8 1637 | . . 3 ⊢ ((((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
6 | impsingle-step15 1639 | . 2 ⊢ (((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impsingle-imim1 1646 impsingle-peirce 1647 |
Copyright terms: Public domain | W3C validator |