| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impsingle-step25 | Structured version Visualization version GIF version | ||
| Description: Derivation of impsingle-step25 from ax-mp 5 and impsingle 1626. It is used as a lemma in the proof of imim1 83 from impsingle 1626. It is Step 25 in Lukasiewicz, where it appears as 'CCpqCCCprqq' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| impsingle-step25 | ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impsingle-step22 1635 | . . . 4 ⊢ ((((𝜑 → 𝜒) → 𝜓) → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | |
| 2 | impsingle-step20 1633 | . . . 4 ⊢ (((((𝜑 → 𝜒) → 𝜓) → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → (((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| 4 | impsingle-step8 1628 | . . 3 ⊢ ((((𝜓 → 𝜃) → (𝜑 → 𝜒)) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| 6 | impsingle-step15 1630 | . 2 ⊢ (((𝜑 → 𝜒) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) → ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓))) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (((𝜑 → 𝜒) → 𝜓) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: impsingle-imim1 1637 impsingle-peirce 1638 |
| Copyright terms: Public domain | W3C validator |