MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step25 Structured version   Visualization version   GIF version

Theorem impsingle-step25 1645
Description: Derivation of impsingle-step25 from ax-mp 5 and impsingle 1635. It is used as a lemma in the proof of imim1 83 from impsingle 1635. It is Step 25 in Lukasiewicz, where it appears as 'CCpqCCCprqq' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step25 ((𝜑𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓))

Proof of Theorem impsingle-step25
StepHypRef Expression
1 impsingle-step22 1644 . . . 4 ((((𝜑𝜒) → 𝜓) → 𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓))
2 impsingle-step20 1642 . . . 4 (((((𝜑𝜒) → 𝜓) → 𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓)) → (((𝜓𝜃) → (𝜑𝜒)) → (((𝜑𝜒) → 𝜓) → 𝜓)))
31, 2ax-mp 5 . . 3 (((𝜓𝜃) → (𝜑𝜒)) → (((𝜑𝜒) → 𝜓) → 𝜓))
4 impsingle-step8 1637 . . 3 ((((𝜓𝜃) → (𝜑𝜒)) → (((𝜑𝜒) → 𝜓) → 𝜓)) → ((𝜑𝜒) → (((𝜑𝜒) → 𝜓) → 𝜓)))
53, 4ax-mp 5 . 2 ((𝜑𝜒) → (((𝜑𝜒) → 𝜓) → 𝜓))
6 impsingle-step15 1639 . 2 (((𝜑𝜒) → (((𝜑𝜒) → 𝜓) → 𝜓)) → ((𝜑𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓)))
75, 6ax-mp 5 1 ((𝜑𝜓) → (((𝜑𝜒) → 𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-imim1  1646  impsingle-peirce  1647
  Copyright terms: Public domain W3C validator