Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impsingle-step22 | Structured version Visualization version GIF version |
Description: Derivation of impsingle-step22 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 22 in Lukasiewicz, where it appears as 'Cpp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
impsingle-step22 | ⊢ (𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impsingle-step4 1636 | . 2 ⊢ (((𝜃 → 𝜇) → 𝜃) → (𝜆 → 𝜃)) | |
2 | impsingle-step4 1636 | . . 3 ⊢ (((𝜑 → 𝜓) → 𝜑) → (𝜑 → 𝜑)) | |
3 | impsingle-step4 1636 | . . . 4 ⊢ (((𝜑 → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → 𝜑)) | |
4 | impsingle 1635 | . . . 4 ⊢ ((((𝜑 → 𝜑) → 𝜑) → ((𝜑 → 𝜓) → 𝜑)) → ((((𝜑 → 𝜓) → 𝜑) → (𝜑 → 𝜑)) → ((((𝜃 → 𝜇) → 𝜃) → (𝜆 → 𝜃)) → (𝜑 → 𝜑)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ ((((𝜑 → 𝜓) → 𝜑) → (𝜑 → 𝜑)) → ((((𝜃 → 𝜇) → 𝜃) → (𝜆 → 𝜃)) → (𝜑 → 𝜑))) |
6 | 2, 5 | ax-mp 5 | . 2 ⊢ ((((𝜃 → 𝜇) → 𝜃) → (𝜆 → 𝜃)) → (𝜑 → 𝜑)) |
7 | 1, 6 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impsingle-step25 1645 impsingle-peirce 1647 |
Copyright terms: Public domain | W3C validator |