MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step22 Structured version   Visualization version   GIF version

Theorem impsingle-step22 1644
Description: Derivation of impsingle-step22 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 22 in Lukasiewicz, where it appears as 'Cpp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step22 (𝜑𝜑)

Proof of Theorem impsingle-step22
StepHypRef Expression
1 impsingle-step4 1636 . 2 (((𝜃𝜇) → 𝜃) → (𝜆𝜃))
2 impsingle-step4 1636 . . 3 (((𝜑𝜓) → 𝜑) → (𝜑𝜑))
3 impsingle-step4 1636 . . . 4 (((𝜑𝜑) → 𝜑) → ((𝜑𝜓) → 𝜑))
4 impsingle 1635 . . . 4 ((((𝜑𝜑) → 𝜑) → ((𝜑𝜓) → 𝜑)) → ((((𝜑𝜓) → 𝜑) → (𝜑𝜑)) → ((((𝜃𝜇) → 𝜃) → (𝜆𝜃)) → (𝜑𝜑))))
53, 4ax-mp 5 . . 3 ((((𝜑𝜓) → 𝜑) → (𝜑𝜑)) → ((((𝜃𝜇) → 𝜃) → (𝜆𝜃)) → (𝜑𝜑)))
62, 5ax-mp 5 . 2 ((((𝜃𝜇) → 𝜃) → (𝜆𝜃)) → (𝜑𝜑))
71, 6ax-mp 5 1 (𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-step25  1645  impsingle-peirce  1647
  Copyright terms: Public domain W3C validator