MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step19 Structured version   Visualization version   GIF version

Theorem impsingle-step19 1641
Description: Derivation of impsingle-step19 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 19 in Lukasiewicz, where it appears as 'CCCCspqCrpCCCpqrCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step19 ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓)))

Proof of Theorem impsingle-step19
StepHypRef Expression
1 impsingle-step18 1640 . 2 ((((𝜏𝜂) → (𝜁𝜂)) → (((𝜂𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂𝜎) → 𝜏) → 𝜌)))
2 impsingle-step18 1640 . . 3 ((((𝜃𝜓) → (𝜑𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓))) → ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓))))
3 impsingle-step18 1640 . . 3 (((((𝜃𝜓) → (𝜑𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓))) → ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓)))) → (((((𝜏𝜂) → (𝜁𝜂)) → (((𝜂𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂𝜎) → 𝜏) → 𝜌))) → ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓)))))
42, 3ax-mp 5 . 2 (((((𝜏𝜂) → (𝜁𝜂)) → (((𝜂𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂𝜎) → 𝜏) → 𝜌))) → ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓))))
51, 4ax-mp 5 1 ((((𝜑𝜓) → 𝜒) → (𝜃𝜓)) → (((𝜓𝜒) → 𝜃) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-step20  1642
  Copyright terms: Public domain W3C validator