Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impsingle-step19 | Structured version Visualization version GIF version |
Description: Derivation of impsingle-step19 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 19 in Lukasiewicz, where it appears as 'CCCCspqCrpCCCpqrCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
impsingle-step19 | ⊢ ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impsingle-step18 1640 | . 2 ⊢ ((((𝜏 → 𝜂) → (𝜁 → 𝜂)) → (((𝜂 → 𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂 → 𝜎) → 𝜏) → 𝜌))) | |
2 | impsingle-step18 1640 | . . 3 ⊢ ((((𝜃 → 𝜓) → (𝜑 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓))) → ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓)))) | |
3 | impsingle-step18 1640 | . . 3 ⊢ (((((𝜃 → 𝜓) → (𝜑 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓))) → ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓)))) → (((((𝜏 → 𝜂) → (𝜁 → 𝜂)) → (((𝜂 → 𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂 → 𝜎) → 𝜏) → 𝜌))) → ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓))))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (((((𝜏 → 𝜂) → (𝜁 → 𝜂)) → (((𝜂 → 𝜎) → 𝜏) → 𝜌)) → (𝜇 → (((𝜂 → 𝜎) → 𝜏) → 𝜌))) → ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓)))) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ((((𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜓)) → (((𝜓 → 𝜒) → 𝜃) → (𝜑 → 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: impsingle-step20 1642 |
Copyright terms: Public domain | W3C validator |