MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step18 Structured version   Visualization version   GIF version

Theorem impsingle-step18 1640
Description: Derivation of impsingle-step18 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 18 in Lukasiewicz, where it appears as 'CCCCrpCspCCCpqrtCuCCCpqrt' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step18 ((((𝜑𝜓) → (𝜒𝜓)) → (((𝜓𝜃) → 𝜑) → 𝜏)) → (𝜂 → (((𝜓𝜃) → 𝜑) → 𝜏)))

Proof of Theorem impsingle-step18
StepHypRef Expression
1 impsingle 1635 . . 3 (((𝜓𝜃) → 𝜑) → ((𝜑𝜓) → (𝜒𝜓)))
2 impsingle 1635 . . . . 5 ((((𝜒𝜓) → 𝜌) → (((𝜓𝜃) → 𝜑) → 𝜏)) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓))))
3 impsingle-step8 1637 . . . . 5 (((((𝜒𝜓) → 𝜌) → (((𝜓𝜃) → 𝜑) → 𝜏)) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓)))) → ((((𝜓𝜃) → 𝜑) → 𝜏) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓)))))
42, 3ax-mp 5 . . . 4 ((((𝜓𝜃) → 𝜑) → 𝜏) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓))))
5 impsingle-step15 1639 . . . 4 (((((𝜓𝜃) → 𝜑) → 𝜏) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓)))) → ((((𝜓𝜃) → 𝜑) → ((𝜑𝜓) → (𝜒𝜓))) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓)))))
64, 5ax-mp 5 . . 3 ((((𝜓𝜃) → 𝜑) → ((𝜑𝜓) → (𝜒𝜓))) → (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓))))
71, 6ax-mp 5 . 2 (((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓)))
8 impsingle 1635 . 2 ((((((𝜓𝜃) → 𝜑) → 𝜏) → (𝜒𝜓)) → ((𝜑𝜓) → (𝜒𝜓))) → ((((𝜑𝜓) → (𝜒𝜓)) → (((𝜓𝜃) → 𝜑) → 𝜏)) → (𝜂 → (((𝜓𝜃) → 𝜑) → 𝜏))))
97, 8ax-mp 5 1 ((((𝜑𝜓) → (𝜒𝜓)) → (((𝜓𝜃) → 𝜑) → 𝜏)) → (𝜂 → (((𝜓𝜃) → 𝜑) → 𝜏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-step19  1641
  Copyright terms: Public domain W3C validator