Proof of Theorem impsingle-step4
| Step | Hyp | Ref
| Expression |
| 1 | | impsingle 1626 |
. 2
⊢ (((𝜏 → 𝜂) → 𝜁) → ((𝜁 → 𝜏) → (𝜎 → 𝜏))) |
| 2 | | impsingle 1626 |
. . 3
⊢ (((𝜑 → 𝜃) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) |
| 3 | | impsingle 1626 |
. . . . 5
⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) |
| 4 | | impsingle 1626 |
. . . . 5
⊢ ((((𝜑 → 𝜓) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) → (((((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑)) → (𝜑 → 𝜓)) → ((𝜑 → 𝜃) → (𝜑 → 𝜓)))) |
| 5 | 3, 4 | ax-mp 5 |
. . . 4
⊢
(((((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑)) → (𝜑 → 𝜓)) → ((𝜑 → 𝜃) → (𝜑 → 𝜓))) |
| 6 | | impsingle 1626 |
. . . 4
⊢
((((((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑)) → (𝜑 → 𝜓)) → ((𝜑 → 𝜃) → (𝜑 → 𝜓))) → ((((𝜑 → 𝜃) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) → ((((𝜏 → 𝜂) → 𝜁) → ((𝜁 → 𝜏) → (𝜎 → 𝜏))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))))) |
| 7 | 5, 6 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜃) → (𝜑 → 𝜓)) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) → ((((𝜏 → 𝜂) → 𝜁) → ((𝜁 → 𝜏) → (𝜎 → 𝜏))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑)))) |
| 8 | 2, 7 | ax-mp 5 |
. 2
⊢ ((((𝜏 → 𝜂) → 𝜁) → ((𝜁 → 𝜏) → (𝜎 → 𝜏))) → (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑))) |
| 9 | 1, 8 | ax-mp 5 |
1
⊢ (((𝜑 → 𝜓) → 𝜑) → (𝜒 → 𝜑)) |