MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step4 Structured version   Visualization version   GIF version

Theorem impsingle-step4 1636
Description: Derivation of impsingle-step4 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of imim1 83 and peirce 205 from impsingle 1635. It is Step 4 in Lukasiewicz, where it appears as 'CCCpqpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step4 (((𝜑𝜓) → 𝜑) → (𝜒𝜑))

Proof of Theorem impsingle-step4
StepHypRef Expression
1 impsingle 1635 . 2 (((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏)))
2 impsingle 1635 . . 3 (((𝜑𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑)))
3 impsingle 1635 . . . . 5 (((𝜑𝜓) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑)))
4 impsingle 1635 . . . . 5 ((((𝜑𝜓) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑))) → (((((𝜑𝜓) → 𝜑) → (𝜒𝜑)) → (𝜑𝜓)) → ((𝜑𝜃) → (𝜑𝜓))))
53, 4ax-mp 5 . . . 4 (((((𝜑𝜓) → 𝜑) → (𝜒𝜑)) → (𝜑𝜓)) → ((𝜑𝜃) → (𝜑𝜓)))
6 impsingle 1635 . . . 4 ((((((𝜑𝜓) → 𝜑) → (𝜒𝜑)) → (𝜑𝜓)) → ((𝜑𝜃) → (𝜑𝜓))) → ((((𝜑𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑)))))
75, 6ax-mp 5 . . 3 ((((𝜑𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑))))
82, 7ax-mp 5 . 2 ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜑) → (𝜒𝜑)))
91, 8ax-mp 5 1 (((𝜑𝜓) → 𝜑) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-step22  1644
  Copyright terms: Public domain W3C validator