MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impsingle-step8 Structured version   Visualization version   GIF version

Theorem impsingle-step8 1637
Description: Derivation of impsingle-step8 from ax-mp 5 and impsingle 1635. It is used as a lemma in proofs of ax-1 6 imim1 83 and peirce 205 from impsingle 1635. It is Step 8 in Lukasiewicz, where it appears as 'CCCsqpCqp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
impsingle-step8 (((𝜑𝜓) → 𝜒) → (𝜓𝜒))

Proof of Theorem impsingle-step8
StepHypRef Expression
1 impsingle 1635 . 2 (((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏)))
2 impsingle 1635 . . 3 (((𝜒𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))
3 impsingle 1635 . . . . . . . 8 (((𝜓𝜃) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓)))
4 impsingle 1635 . . . . . . . . . 10 (((𝜓𝜒) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓)))
5 impsingle 1635 . . . . . . . . . 10 ((((𝜓𝜒) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓))) → (((((𝜓𝜒) → 𝜓) → (𝜑𝜓)) → (𝜓𝜒)) → ((𝜓𝜃) → (𝜓𝜒))))
64, 5ax-mp 5 . . . . . . . . 9 (((((𝜓𝜒) → 𝜓) → (𝜑𝜓)) → (𝜓𝜒)) → ((𝜓𝜃) → (𝜓𝜒)))
7 impsingle 1635 . . . . . . . . 9 ((((((𝜓𝜒) → 𝜓) → (𝜑𝜓)) → (𝜓𝜒)) → ((𝜓𝜃) → (𝜓𝜒))) → ((((𝜓𝜃) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓)))))
86, 7ax-mp 5 . . . . . . . 8 ((((𝜓𝜃) → (𝜓𝜒)) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓))))
93, 8ax-mp 5 . . . . . . 7 ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜓𝜒) → 𝜓) → (𝜑𝜓)))
101, 9ax-mp 5 . . . . . 6 (((𝜓𝜒) → 𝜓) → (𝜑𝜓))
11 impsingle 1635 . . . . . 6 ((((𝜓𝜒) → 𝜓) → (𝜑𝜓)) → (((𝜑𝜓) → (𝜓𝜒)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))))
1210, 11ax-mp 5 . . . . 5 (((𝜑𝜓) → (𝜓𝜒)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))
13 impsingle 1635 . . . . 5 ((((𝜑𝜓) → (𝜓𝜒)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))) → (((((𝜑𝜓) → 𝜒) → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜒𝜃) → (𝜑𝜓))))
1412, 13ax-mp 5 . . . 4 (((((𝜑𝜓) → 𝜒) → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜒𝜃) → (𝜑𝜓)))
15 impsingle 1635 . . . 4 ((((((𝜑𝜓) → 𝜒) → (𝜓𝜒)) → (𝜑𝜓)) → ((𝜒𝜃) → (𝜑𝜓))) → ((((𝜒𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))))
1614, 15ax-mp 5 . . 3 ((((𝜒𝜃) → (𝜑𝜓)) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))) → ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒))))
172, 16ax-mp 5 . 2 ((((𝜏𝜂) → 𝜁) → ((𝜁𝜏) → (𝜎𝜏))) → (((𝜑𝜓) → 𝜒) → (𝜓𝜒)))
181, 17ax-mp 5 1 (((𝜑𝜓) → 𝜒) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impsingle-ax1  1638  impsingle-step15  1639  impsingle-step18  1640  impsingle-step20  1642  impsingle-step25  1645
  Copyright terms: Public domain W3C validator