Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr1 Structured version   Visualization version   GIF version

Theorem mdandyvr1 44461
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr1.1 (𝜑𝜁)
mdandyvr1.2 (𝜓𝜎)
mdandyvr1.3 (𝜒𝜓)
mdandyvr1.4 (𝜃𝜑)
mdandyvr1.5 (𝜏𝜑)
mdandyvr1.6 (𝜂𝜑)
Assertion
Ref Expression
mdandyvr1 ((((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜁)) ∧ (𝜂𝜁))

Proof of Theorem mdandyvr1
StepHypRef Expression
1 mdandyvr1.3 . . . . 5 (𝜒𝜓)
2 mdandyvr1.2 . . . . 5 (𝜓𝜎)
31, 2bitri 274 . . . 4 (𝜒𝜎)
4 mdandyvr1.4 . . . . 5 (𝜃𝜑)
5 mdandyvr1.1 . . . . 5 (𝜑𝜁)
64, 5bitri 274 . . . 4 (𝜃𝜁)
73, 6pm3.2i 471 . . 3 ((𝜒𝜎) ∧ (𝜃𝜁))
8 mdandyvr1.5 . . . 4 (𝜏𝜑)
98, 5bitri 274 . . 3 (𝜏𝜁)
107, 9pm3.2i 471 . 2 (((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜁))
11 mdandyvr1.6 . . 3 (𝜂𝜑)
1211, 5bitri 274 . 2 (𝜂𝜁)
1310, 12pm3.2i 471 1 ((((𝜒𝜎) ∧ (𝜃𝜁)) ∧ (𝜏𝜁)) ∧ (𝜂𝜁))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  mdandyvr14  44474
  Copyright terms: Public domain W3C validator