Users' Mathboxes Mathbox for Jarvin Udandy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdandyvr0 Structured version   Visualization version   GIF version

Theorem mdandyvr0 44460
Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.)
Hypotheses
Ref Expression
mdandyvr0.1 (𝜑𝜁)
mdandyvr0.2 (𝜓𝜎)
mdandyvr0.3 (𝜒𝜑)
mdandyvr0.4 (𝜃𝜑)
mdandyvr0.5 (𝜏𝜑)
mdandyvr0.6 (𝜂𝜑)
Assertion
Ref Expression
mdandyvr0 ((((𝜒𝜁) ∧ (𝜃𝜁)) ∧ (𝜏𝜁)) ∧ (𝜂𝜁))

Proof of Theorem mdandyvr0
StepHypRef Expression
1 mdandyvr0.3 . . . . 5 (𝜒𝜑)
2 mdandyvr0.1 . . . . 5 (𝜑𝜁)
31, 2bitri 274 . . . 4 (𝜒𝜁)
4 mdandyvr0.4 . . . . 5 (𝜃𝜑)
54, 2bitri 274 . . . 4 (𝜃𝜁)
63, 5pm3.2i 471 . . 3 ((𝜒𝜁) ∧ (𝜃𝜁))
7 mdandyvr0.5 . . . 4 (𝜏𝜑)
87, 2bitri 274 . . 3 (𝜏𝜁)
96, 8pm3.2i 471 . 2 (((𝜒𝜁) ∧ (𝜃𝜁)) ∧ (𝜏𝜁))
10 mdandyvr0.6 . . 3 (𝜂𝜑)
1110, 2bitri 274 . 2 (𝜂𝜁)
129, 11pm3.2i 471 1 ((((𝜒𝜁) ∧ (𝜃𝜁)) ∧ (𝜏𝜁)) ∧ (𝜂𝜁))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  mdandyvr15  44475
  Copyright terms: Public domain W3C validator