| Metamath
Proof Explorer Theorem List (p. 473 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | aovov0bi 47201 | The operation's value on an ordered pair is the empty set if and only if the alternative value of the operation on this ordered pair is either the empty set or the universal class. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐴𝐹𝐵) = ∅ ↔ ( ((𝐴𝐹𝐵)) = ∅ ∨ ((𝐴𝐹𝐵)) = V)) | ||
| Theorem | rspceaov 47202* | A frequently used special case of rspc2ev 3604 for operation values, analogous to rspceov 7439. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ 𝑆 = ((𝐶𝐹𝐷)) ) → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑆 = ((𝑥𝐹𝑦)) ) | ||
| Theorem | fnotaovb 47203 | Equivalence of operation value and ordered triple membership, analogous to fnopfvb 6915. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ( ((𝐶𝐹𝐷)) = 𝑅 ↔ 〈𝐶, 𝐷, 𝑅〉 ∈ 𝐹)) | ||
| Theorem | ffnaov 47204* | An operation maps to a class to which all values belong, analogous to ffnov 7518. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) | ||
| Theorem | faovcl 47205 | Closure law for an operation, analogous to fovcl 7520. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝐶) | ||
| Theorem | aovmpt4g 47206* | Value of a function given by the maps-to notation, analogous to ovmpt4g 7539. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → ((𝑥𝐹𝑦)) = 𝐶) | ||
| Theorem | aoprssdm 47207* | Domain of closure of an operation. In contrast to oprssdm 7573, no additional property for S (¬ ∅ ∈ 𝑆) is required! (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → ((𝑥𝐹𝑦)) ∈ 𝑆) ⇒ ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 | ||
| Theorem | ndmaovcl 47208 | The "closure" of an operation outside its domain, when the operation's value is a set in contrast to ndmovcl 7577 where it is required that the domain contains the empty set (∅ ∈ 𝑆). (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) ∈ 𝑆) & ⊢ ((𝐴𝐹𝐵)) ∈ V ⇒ ⊢ ((𝐴𝐹𝐵)) ∈ 𝑆 | ||
| Theorem | ndmaovrcl 47209 | Reverse closure law, in contrast to ndmovrcl 7578 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional asumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ ( ((𝐴𝐹𝐵)) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | ||
| Theorem | ndmaovcom 47210 | Any operation is commutative outside its domain, analogous to ndmovcom 7579. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵)) = ((𝐵𝐹𝐴)) ) | ||
| Theorem | ndmaovass 47211 | Any operation is associative outside its domain. In contrast to ndmovass 7580 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (( ((𝐴𝐹𝐵)) 𝐹𝐶)) = ((𝐴𝐹 ((𝐵𝐹𝐶)) )) ) | ||
| Theorem | ndmaovdistr 47212 | Any operation is distributive outside its domain. In contrast to ndmovdistr 7581 where it is required that the operation's domain doesn't contain the empty set (¬ ∅ ∈ 𝑆), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.) |
| ⊢ dom 𝐹 = (𝑆 × 𝑆) & ⊢ dom 𝐺 = (𝑆 × 𝑆) ⇒ ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺 ((𝐵𝐹𝐶)) )) = (( ((𝐴𝐺𝐵)) 𝐹 ((𝐴𝐺𝐶)) )) ) | ||
In the following, a second approach is followed to define function values alternately to df-afv 47125. The current definition of the value (𝐹‘𝐴) of a function 𝐹 at an argument 𝐴 (see df-fv 6522) assures that this value is always a set, see fex 7203. This is because this definition can be applied to any classes 𝐹 and 𝐴, and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6896 and fvprc 6853). "(𝐹‘𝐴) is meaningful" means "the class 𝐹 regarded as function is defined at the argument 𝐴" in this context. This is also expressed by 𝐹 defAt 𝐴, see df-dfat 47124. In the theory of partial functions, it is a common case that 𝐹 is not defined at 𝐴. Although it is very convenient for many theorems on functions and their proofs, there are some cases in which from (𝐹‘𝐴) = ∅ alone it cannot be decided/derived whether (𝐹‘𝐴) is meaningful (𝐹 is actually a function which is defined for 𝐴 and really has the function value ∅ at 𝐴) or not. Therefore, additional assumptions are required, such as ∅ ∉ ran 𝐹, ∅ ∈ ran 𝐹, 𝐹 defAt 𝐴, or Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 (see, for example, ndmfvrcl 6897). To avoid such an ambiguity, an alternative definition (𝐹''''𝐴) (see df-afv2 47214) would be possible which evaluates to a set not belonging to the range of 𝐹 ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) if it is not meaningful (see ndfatafv2 47216). We say "(𝐹''''𝐴) is not defined (or undefined)" if (𝐹''''𝐴) is not in the range of 𝐹 ((𝐹''''𝐴) ∉ ran 𝐹). Because of afv2ndefb 47229, this is equivalent to ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹. If (𝐹''''𝐴) is in the range of 𝐹 ((𝐹''''𝐴) ∈ ran 𝐹), we say that "(𝐹''''𝐴) is defined". If ran 𝐹 is a set, we can use the symbol Undef to express that (𝐹''''𝐴) is not defined: (𝐹''''𝐴) = (Undef‘ran 𝐹) (see ndfatafv2undef 47217). We could have used this symbol directly to define the alternate value of a function, which would have the advantage that (𝐹''''𝐴) would always be a set. But first this symbol is defined using the original function value, which would not make it possible to replace the original definition by the alternate definition, and second we would have to assume that ran 𝐹 ∈ V in most of the theorems. To summarize, that means (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅ (see afv2ndeffv0 47265), but (𝐹‘𝐴) = ∅ → (𝐹''''𝐴) ∉ ran 𝐹 is not generally valid, see afv2fv0 47270. The alternate definition, however, corresponds to the current definition ((𝐹‘𝐴) = (𝐹''''𝐴)) if the function 𝐹 is defined at 𝐴 (see dfatafv2eqfv 47266). With this definition the following intuitive equivalence holds: (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹), see dfatafv2rnb 47232. An interesting question would be if (𝐹‘𝐴) could be replaced by (𝐹'''𝐴) in most of the theorems based on function values. If we look at the (currently 24) proofs using the definition df-fv 6522 of (𝐹‘𝐴), we see that analogues for the following 7 theorems can be proven using the alternative definition: fveq1 6860-> afv2eq1 47221, fveq2 6861-> afv2eq2 47222, nffv 6871-> nfafv2 47223, csbfv12 6909-> csbafv212g , rlimdm 15524-> rlimdmafv2 47263, tz6.12-1 6884-> tz6.12-1-afv2 47246, fveu 6850-> afv2eu 47243. Six theorems proved by directly using df-fv 6522 are within a mathbox (fvsb 44448, uncov 37602) or not used (rlimdmafv 47182, avril1 30399) or experimental (dfafv2 47137, dfafv22 47264). However, the remaining 11 theorems proved by directly using df-fv 6522 are used more or less often: * fvex 6874: used in about 1600 proofs: Only if the function is defined at the argument, or the range of the function/class is a set, analog theorems can be proven (dfatafv2ex 47218 resp. afv2ex 47219). All of these 1600 proofs have to be checked if one of these two theorems can be used instead of fvex 6874. * fvres 6880: used in about 400 proofs : Only if the function is defined at the argument, an analog theorem can be proven (afv2res 47244). In the undefined case such a theorem cannot exist (without additional assumptions), because the range of (𝐹 ↾ 𝐵) is mostly different from the range of 𝐹, and therefore also the "undefined" values are different. All of these 400 proofs have to be checked if afv2res 47244 can be used instead of fvres 6880. * tz6.12-2 6849 (-> tz6.12-2-afv2 47242): root theorem of many theorems which have not a strict analogue, and which are used many times: ** fvprc 6853 (-> afv2prc 47231), used in 193 proofs, ** tz6.12i 6889 (-> tz6.12i-afv2 47248), used - indirectly via fvbr0 6890 and fvrn0 6891 - in 19 proofs, and in fvclss 7218 used in fvclex 7940 used in fvresex 7941 (which is not used!) and in dcomex 10407 (used in 4 proofs), ** ndmfv 6896 (-> ndmafv2nrn ), used in 124 proofs ** nfunsn 6903 (-> nfunsnafv2 ), used by fvfundmfvn0 6904 (used in 3 proofs), and dffv2 6959 (not used) ** funpartfv 35940, setrec2lem1 49686 (mathboxes) * fv2 6856: only used by elfv 6859, which is only used by fv3 6879, which is not used. * dffv3 6857 (-> dfafv23 ): used by dffv4 6858 (the previous "df-fv"), which now is only used in mathboxes (csbfv12gALTVD 44895), by shftval 15047 (itself used in 11 proofs), by dffv5 35919 (mathbox) and by fvco2 6961 (-> afv2co2 47262). * fvopab5 7004: used only by ajval 30797 (not used) and by adjval 31826, which is used in adjval2 31827 (not used) and in adjbdln 32019 (used in 7 proofs). * zsum 15691: used (via isum 15692, sum0 15694, sumss 15697 and fsumsers 15701) in 76 proofs. * isumshft 15812: used in pserdv2 26347 (used in logtayl 26576, binomcxplemdvsum 44351) , eftlub 16084 (used in 4 proofs), binomcxplemnotnn0 44352 (used in binomcxp 44353 only) and logtayl 26576 (used in 4 proofs). * ovtpos 8223: used in 16 proofs. * zprod 15910: used in 3 proofs: iprod 15911, zprodn0 15912 and prodss 15920 * iprodclim3 15973: not used! As a result of this analysis we can say that the current definition of a function value is crucial for Metamath and cannot be exchanged easily with an alternative definition. While fv2 6856, dffv3 6857, fvopab5 7004, zsum 15691, isumshft 15812, ovtpos 8223 and zprod 15910 are not critical or are, hopefully, also valid for the alternative definition, fvex 6874, fvres 6880 and tz6.12-2 6849 (and the theorems based on them) are essential for the current definition of function values. | ||
| Syntax | cafv2 47213 | Extend the definition of a class to include the alternate function value. Read: "the value of 𝐹 at 𝐴 " or "𝐹 of 𝐴". For using several apostrophes as a symbol see comment for cafv 47122. |
| class (𝐹''''𝐴) | ||
| Definition | df-afv2 47214* | Alternate definition of the value of a function, (𝐹''''𝐴), also known as function application (and called "alternate function value" in the following). In contrast to (𝐹‘𝐴) = ∅ (see comment of df-fv 6522, and especially ndmfv 6896), (𝐹''''𝐴) is guaranteed not to be in the range of 𝐹 if 𝐹 is not defined at 𝐴 (whereas ∅ can be a member of ran 𝐹). (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran 𝐹) | ||
| Theorem | dfatafv2iota 47215* | If a function is defined at a class 𝐴 the alternate function value at 𝐴 is the unique value assigned to 𝐴 by the function (analogously to (𝐹‘𝐴)). (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝐴𝐹𝑥)) | ||
| Theorem | ndfatafv2 47216 | The alternate function value at a class 𝐴 if the function is not defined at this set 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) = 𝒫 ∪ ran 𝐹) | ||
| Theorem | ndfatafv2undef 47217 | The alternate function value at a class 𝐴 is undefined if the function, whose range is a set, is not defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((ran 𝐹 ∈ 𝑉 ∧ ¬ 𝐹 defAt 𝐴) → (𝐹''''𝐴) = (Undef‘ran 𝐹)) | ||
| Theorem | dfatafv2ex 47218 | The alternate function value at a class 𝐴 is always a set if the function/class 𝐹 is defined at 𝐴. (Contributed by AV, 6-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | afv2ex 47219 | The alternate function value is always a set if the range of the function is a set. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (ran 𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | afv2eq12d 47220 | Equality deduction for function value, analogous to fveq12d 6868. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹''''𝐴) = (𝐺''''𝐵)) | ||
| Theorem | afv2eq1 47221 | Equality theorem for function value, analogous to fveq1 6860. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐹 = 𝐺 → (𝐹''''𝐴) = (𝐺''''𝐴)) | ||
| Theorem | afv2eq2 47222 | Equality theorem for function value, analogous to fveq2 6861. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐴 = 𝐵 → (𝐹''''𝐴) = (𝐹''''𝐵)) | ||
| Theorem | nfafv2 47223 | Bound-variable hypothesis builder for function value, analogous to nffv 6871. To prove a deduction version of this analogous to nffvd 6873 is not easily possible because a deduction version of nfdfat 47132 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹''''𝐴) | ||
| Theorem | csbafv212g 47224 | Move class substitution in and out of a function value, analogous to csbfv12 6909, with a direct proof proposed by Mario Carneiro, analogous to csbov123 7434. (Contributed by AV, 4-Sep-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐹''''𝐵) = (⦋𝐴 / 𝑥⦌𝐹''''⦋𝐴 / 𝑥⦌𝐵)) | ||
| Theorem | fexafv2ex 47225 | The alternate function value is always a set if the function (resp. the domain of the function) is a set. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (𝐹 ∈ 𝑉 → (𝐹''''𝐴) ∈ V) | ||
| Theorem | ndfatafv2nrn 47226 | The alternate function value at a class 𝐴 at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | ndmafv2nrn 47227 | The value of a class outside its domain is not in the range, compare with ndmfv 6896. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | funressndmafv2rn 47228 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function if the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | ||
| Theorem | afv2ndefb 47229 | Two ways to say that an alternate function value is not defined. (Contributed by AV, 5-Sep-2022.) |
| ⊢ ((𝐹''''𝐴) = 𝒫 ∪ ran 𝐹 ↔ (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | nfunsnafv2 47230 | If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn 6903. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | afv2prc 47231 | A function's value at a proper class is not defined, compare with fvprc 6853. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (¬ 𝐴 ∈ V → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | dfatafv2rnb 47232 | The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | ||
| Theorem | afv2orxorb 47233 | If a set is in the range of a function, the alternate function value at a class 𝐴 equals this set or is not in the range of the function iff the alternate function value at the class 𝐴 either equals this set or is not in the range of the function. If 𝐵 ∉ ran 𝐹, both disjuncts of the exclusive or can be true: (𝐹''''𝐴) = 𝐵 → (𝐹''''𝐴) ∉ ran 𝐹. (Contributed by AV, 11-Sep-2022.) |
| ⊢ (𝐵 ∈ ran 𝐹 → (((𝐹''''𝐴) = 𝐵 ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = 𝐵 ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | ||
| Theorem | dmafv2rnb 47234 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function, iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | ||
| Theorem | fundmafv2rnb 47235 | The alternate function value at a class 𝐴 is defined, i.e., in the range of the function iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (Fun 𝐹 → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)) | ||
| Theorem | afv2elrn 47236 | An alternate function value belongs to the range of the function, analogous to fvelrn 7051. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹''''𝐴) ∈ ran 𝐹) | ||
| Theorem | afv20defat 47237 | If the alternate function value at an argument is the empty set, the function is defined at this argument. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | ||
| Theorem | fnafv2elrn 47238 | An alternate function value belongs to the range of the function, analogous to fnfvelrn 7055. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ ran 𝐹) | ||
| Theorem | fafv2elcdm 47239 | An alternate function value belongs to the codomain of the function, analogous to ffvelcdm 7056. (Contributed by AV, 2-Sep-2022.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐶 ∈ 𝐴) → (𝐹''''𝐶) ∈ 𝐵) | ||
| Theorem | fafv2elrnb 47240 | An alternate function value is defined, i.e., belongs to the range of the function, iff its argument is in the domain of the function. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (𝐹:𝐴⟶𝐵 → (𝐶 ∈ 𝐴 ↔ (𝐹''''𝐶) ∈ ran 𝐹)) | ||
| Theorem | fcdmvafv2v 47241 | If the codomain of a function is a set, the alternate function value is always also a set. (Contributed by AV, 4-Sep-2022.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐹''''𝐶) ∈ V) | ||
| Theorem | tz6.12-2-afv2 47242* | Function value when 𝐹 is (locally) not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27, analogous to tz6.12-2 6849. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) ∉ ran 𝐹) | ||
| Theorem | afv2eu 47243* | The value of a function at a unique point, analogous to fveu 6850. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹''''𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | ||
| Theorem | afv2res 47244 | The value of a restricted function for an argument at which the function is defined. Analog to fvres 6880. (Contributed by AV, 5-Sep-2022.) |
| ⊢ ((𝐹 defAt 𝐴 ∧ 𝐴 ∈ 𝐵) → ((𝐹 ↾ 𝐵)''''𝐴) = (𝐹''''𝐴)) | ||
| Theorem | tz6.12-afv2 47245* | Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6886. (Contributed by AV, 5-Sep-2022.) |
| ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹''''𝐴) = 𝑦) | ||
| Theorem | tz6.12-1-afv2 47246* | Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12-1 6884. (Contributed by AV, 5-Sep-2022.) |
| ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹''''𝐴) = 𝑦) | ||
| Theorem | tz6.12c-afv2 47247* | Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27, analogous to tz6.12c 6883. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | ||
| Theorem | tz6.12i-afv2 47248 | Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. analogous to tz6.12i 6889. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (𝐵 ∈ ran 𝐹 → ((𝐹''''𝐴) = 𝐵 → 𝐴𝐹𝐵)) | ||
| Theorem | funressnbrafv2 47249 | The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6912. (Contributed by AV, 7-Sep-2022.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ Fun (𝐹 ↾ {𝐴})) → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) | ||
| Theorem | dfatbrafv2b 47250 | Equivalence of function value and binary relation, analogous to fnbrfvb 6914 or funbrfvb 6917. 𝐵 ∈ V is required, because otherwise 𝐴𝐹𝐵 ↔ ∅ ∈ 𝐹 can be true, but (𝐹''''𝐴) = 𝐵 is always false (because of dfatafv2ex 47218). (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
| Theorem | dfatopafv2b 47251 | Equivalence of function value and ordered pair membership, analogous to fnopfvb 6915 or funopfvb 6918. (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((𝐹 defAt 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
| Theorem | funbrafv2 47252 | The second argument of a binary relation on a function is the function's value, analogous to funbrfv 6912. (Contributed by AV, 6-Sep-2022.) |
| ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹''''𝐴) = 𝐵)) | ||
| Theorem | fnbrafv2b 47253 | Equivalence of function value and binary relation, analogous to fnbrfvb 6914. (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | ||
| Theorem | fnopafv2b 47254 | Equivalence of function value and ordered pair membership, analogous to fnopfvb 6915. (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | funbrafv22b 47255 | Equivalence of function value and binary relation, analogous to funbrfvb 6917. (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
| Theorem | funopafv2b 47256 | Equivalence of function value and ordered pair membership, analogous to funopfvb 6918. (Contributed by AV, 6-Sep-2022.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
| Theorem | dfatsnafv2 47257 | Singleton of function value, analogous to fnsnfv 6943. (Contributed by AV, 7-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) | ||
| Theorem | dfafv23 47258* | A definition of function value in terms of iota, analogous to dffv3 6857. (Contributed by AV, 6-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴}))) | ||
| Theorem | dfatdmfcoafv2 47259 | Domain of a function composition, analogous to dmfco 6960. (Contributed by AV, 7-Sep-2022.) |
| ⊢ (𝐺 defAt 𝐴 → (𝐴 ∈ dom (𝐹 ∘ 𝐺) ↔ (𝐺''''𝐴) ∈ dom 𝐹)) | ||
| Theorem | dfatcolem 47260* | Lemma for dfatco 47261. (Contributed by AV, 8-Sep-2022.) |
| ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | ||
| Theorem | dfatco 47261 | The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
| ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) | ||
| Theorem | afv2co2 47262 | Value of a function composition, analogous to fvco2 6961. (Contributed by AV, 8-Sep-2022.) |
| ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ((𝐹 ∘ 𝐺)''''𝑋) = (𝐹''''(𝐺''''𝑋))) | ||
| Theorem | rlimdmafv2 47263 | Two ways to express that a function has a limit, analogous to rlimdm 15524. (Contributed by AV, 5-Sep-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → sup(𝐴, ℝ*, < ) = +∞) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom ⇝𝑟 ↔ 𝐹 ⇝𝑟 ( ⇝𝑟 ''''𝐹))) | ||
| Theorem | dfafv22 47264 | Alternate definition of (𝐹''''𝐴) using (𝐹‘𝐴) directly. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (𝐹‘𝐴), 𝒫 ∪ ran 𝐹) | ||
| Theorem | afv2ndeffv0 47265 | If the alternate function value at an argument is undefined, i.e., not in the range of the function, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 → (𝐹‘𝐴) = ∅) | ||
| Theorem | dfatafv2eqfv 47266 | If a function is defined at a class 𝐴, the alternate function value equals the function's value at 𝐴. (Contributed by AV, 3-Sep-2022.) |
| ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afv2rnfveq 47267 | If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afv20fv0 47268 | If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) | ||
| Theorem | afv2fvn0fveq 47269 | If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹‘𝐴)) | ||
| Theorem | afv2fv0 47270 | If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | ||
| Theorem | afv2fv0b 47271 | The function's value at an argument is the empty set if and only if the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
| ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | ||
| Theorem | afv2fv0xorb 47272 | If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.) |
| ⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | ||
| Theorem | an4com24 47273 | Rearrangement of 4 conjuncts: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜒 ∧ 𝜓))) | ||
| Theorem | 3an4ancom24 47274 | Commutative law for a conjunction with a triple conjunction: second and forth positions interchanged. (Contributed by AV, 18-Feb-2022.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜃 ∧ 𝜒) ∧ 𝜓)) | ||
| Theorem | 4an21 47275 | Rearrangement of 4 conjuncts with a triple conjunction. (Contributed by AV, 4-Mar-2022.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒 ∧ 𝜃))) | ||
| Syntax | cnelbr 47276 | Extend wff notation to include the 'not element of' relation. |
| class _∉ | ||
| Definition | df-nelbr 47277* | Define negated membership as binary relation. Analogous to df-eprel 5541 (the membership relation). (Contributed by AV, 26-Dec-2021.) |
| ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | ||
| Theorem | dfnelbr2 47278 | Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
| ⊢ _∉ = ((V × V) ∖ E ) | ||
| Theorem | nelbr 47279 | The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) | ||
| Theorem | nelbrim 47280 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴 ∈ 𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.) |
| ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) | ||
| Theorem | nelbrnel 47281 | A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ 𝐴 ∉ 𝐵)) | ||
| Theorem | nelbrnelim 47282 | If a set is related to another set by the negated membership relation, then it is not a member of the other set. (Contributed by AV, 26-Dec-2021.) |
| ⊢ (𝐴 _∉ 𝐵 → 𝐴 ∉ 𝐵) | ||
| Theorem | ralralimp 47283* | Selecting one of two alternatives within a restricted generalization if one of the alternatives is false. (Contributed by AV, 6-Sep-2018.) (Proof shortened by AV, 13-Oct-2018.) |
| ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → (∀𝑥 ∈ 𝐴 ((𝜑 → (𝜃 ∨ 𝜏)) ∧ ¬ 𝜃) → 𝜏)) | ||
| Theorem | otiunsndisjX 47284* | The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018.) |
| ⊢ (𝐵 ∈ 𝑋 → Disj 𝑎 ∈ 𝑉 ∪ 𝑐 ∈ 𝑊 {〈𝑎, 𝐵, 𝑐〉}) | ||
| Theorem | fvifeq 47285 | Equality of function values with conditional arguments, see also fvif 6877. (Contributed by Alexander van der Vekens, 21-May-2018.) |
| ⊢ (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝐹‘𝐴) = if(𝜑, (𝐹‘𝐵), (𝐹‘𝐶))) | ||
| Theorem | rnfdmpr 47286 | The range of a one-to-one function 𝐹 of an unordered pair into a set is the unordered pair of the function values. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝐹 Fn {𝑋, 𝑌} → ran 𝐹 = {(𝐹‘𝑋), (𝐹‘𝑌)})) | ||
| Theorem | imarnf1pr 47287 | The image of the range of a function 𝐹 under a function 𝐸 if 𝐹 is a function from a pair into the domain of 𝐸. (Contributed by Alexander van der Vekens, 2-Feb-2018.) |
| ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (((𝐹:{𝑋, 𝑌}⟶dom 𝐸 ∧ 𝐸:dom 𝐸⟶𝑅) ∧ ((𝐸‘(𝐹‘𝑋)) = 𝐴 ∧ (𝐸‘(𝐹‘𝑌)) = 𝐵)) → (𝐸 “ ran 𝐹) = {𝐴, 𝐵})) | ||
| Theorem | funop1 47288* | A function is an ordered pair iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ (∃𝑥∃𝑦 𝐹 = 〈𝑥, 𝑦〉 → (Fun 𝐹 ↔ ∃𝑥∃𝑦 𝐹 = {〈𝑥, 𝑦〉})) | ||
| Theorem | fun2dmnopgexmpl 47289 | A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020.) (Avoid depending on this detail.) |
| ⊢ (𝐺 = {〈0, 1〉, 〈1, 1〉} → ¬ 𝐺 ∈ (V × V)) | ||
| Theorem | opabresex0d 47290* | A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 1-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabbrfex0d 47291* | A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
| Theorem | opabresexd 47292* | A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 15-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝜓)} ∈ V) | ||
| Theorem | opabbrfexd 47293* | A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.) |
| ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑦:𝐴⟶𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐴 ∈ 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) | ||
| Theorem | f1oresf1orab 47294* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) → (𝜒 ↔ 𝑥 ∈ 𝐷)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | f1oresf1o 47295* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ (𝜑 → (∃𝑥 ∈ 𝐷 (𝐹‘𝑥) = 𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝜒))) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | f1oresf1o2 47296* | Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022.) |
| ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → 𝐷 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑥 ∈ 𝐷 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–1-1-onto→{𝑦 ∈ 𝐵 ∣ 𝜒}) | ||
| Theorem | fvmptrab 47297* | Value of a function mapping a set to a class abstraction restricting a class depending on the argument of the function. More general version of fvmptrabfv 7003, but relying on the fact that out-of-domain arguments evaluate to the empty set, which relies on set.mm's particular encoding. (Contributed by AV, 14-Feb-2022.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ 𝑀 ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑋 → 𝑀 = 𝑁) & ⊢ (𝑋 ∈ 𝑉 → 𝑁 ∈ V) & ⊢ (𝑋 ∉ 𝑉 → 𝑁 = ∅) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ 𝑁 ∣ 𝜓} | ||
| Theorem | fvmptrabdm 47298* | Value of a function mapping a set to a class abstraction restricting the value of another function. See also fvmptrabfv 7003. (Suggested by BJ, 18-Feb-2022.) (Contributed by AV, 18-Feb-2022.) |
| ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜑}) & ⊢ (𝑥 = 𝑋 → (𝜑 ↔ 𝜓)) & ⊢ (𝑌 ∈ dom 𝐺 → 𝑋 ∈ dom 𝐹) ⇒ ⊢ (𝐹‘𝑋) = {𝑦 ∈ (𝐺‘𝑌) ∣ 𝜓} | ||
| Theorem | cnambpcma 47299 | ((a-b)+c)-a = c-a holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) − 𝐴) = (𝐶 − 𝐵)) | ||
| Theorem | cnapbmcpd 47300 | ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) − 𝐶) + 𝐷) = (((𝐴 + 𝐷) + 𝐵) − 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |