| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > merco1lem8 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1713. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merco1lem8 | ⊢ (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | merco1lem6 1721 | . 2 ⊢ ((𝜓 → (𝜓 → 𝜒)) → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) | |
| 2 | merco1lem6 1721 | . 2 ⊢ (((𝜓 → (𝜓 → 𝜒)) → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) → (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: merco1lem9 1725 merco1lem14 1730 |
| Copyright terms: Public domain | W3C validator |