Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem8 Structured version   Visualization version   GIF version

Theorem merco1lem8 1726
 Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1715. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem8 (𝜑 → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒)))

Proof of Theorem merco1lem8
StepHypRef Expression
1 merco1lem6 1723 . 2 ((𝜓 → (𝜓𝜒)) → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒)))
2 merco1lem6 1723 . 2 (((𝜓 → (𝜓𝜒)) → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒))) → (𝜑 → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒))))
31, 2ax-mp 5 1 (𝜑 → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-tru 1541  df-fal 1551 This theorem is referenced by:  merco1lem9  1727  merco1lem14  1732
 Copyright terms: Public domain W3C validator