Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1lem8 | Structured version Visualization version GIF version |
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1716. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1lem8 | ⊢ (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | merco1lem6 1724 | . 2 ⊢ ((𝜓 → (𝜓 → 𝜒)) → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) | |
2 | merco1lem6 1724 | . 2 ⊢ (((𝜓 → (𝜓 → 𝜒)) → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) → (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒)))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜑 → ((𝜓 → (𝜓 → 𝜒)) → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: merco1lem9 1728 merco1lem14 1733 |
Copyright terms: Public domain | W3C validator |