MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1 Structured version   Visualization version   GIF version

Theorem merco1 1716
Description: A single axiom for propositional calculus discovered by C. A. Meredith.

This axiom is worthy of note, due to it having only 19 symbols, not counting parentheses. The more well-known meredith 1644 has 21 symbols, sans parentheses.

See merco2 1739 for another axiom of equal length. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
merco1 (((((𝜑𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((𝜏𝜑) → (𝜒𝜑)))

Proof of Theorem merco1
StepHypRef Expression
1 ax-1 6 . . . . . 6 𝜒 → (¬ 𝜃 → ¬ 𝜒))
2 falim 1556 . . . . . 6 (⊥ → (¬ 𝜃 → ¬ 𝜒))
31, 2ja 186 . . . . 5 ((𝜒 → ⊥) → (¬ 𝜃 → ¬ 𝜒))
43imim2i 16 . . . 4 (((𝜑𝜓) → (𝜒 → ⊥)) → ((𝜑𝜓) → (¬ 𝜃 → ¬ 𝜒)))
54imim1i 63 . . 3 ((((𝜑𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → (((𝜑𝜓) → (𝜒 → ⊥)) → 𝜃))
65imim1i 63 . 2 (((((𝜑𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((((𝜑𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → 𝜏))
7 meredith 1644 . 2 (((((𝜑𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → 𝜏) → ((𝜏𝜑) → (𝜒𝜑)))
86, 7syl 17 1 (((((𝜑𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((𝜏𝜑) → (𝜒𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by:  merco1lem1  1717  retbwax2  1719  merco1lem2  1720  merco1lem4  1722  merco1lem5  1723  merco1lem6  1724  merco1lem7  1725  merco1lem10  1729  merco1lem11  1730  merco1lem12  1731  merco1lem13  1732  merco1lem14  1733  merco1lem16  1735  merco1lem17  1736  merco1lem18  1737  retbwax1  1738
  Copyright terms: Public domain W3C validator