Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > merco1 | Structured version Visualization version GIF version |
Description: A single axiom for
propositional calculus discovered by C. A. Meredith.
This axiom is worthy of note, due to it having only 19 symbols, not counting parentheses. The more well-known meredith 1645 has 21 symbols, sans parentheses. See merco2 1740 for another axiom of equal length. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
merco1 | ⊢ (((((𝜑 → 𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((𝜏 → 𝜑) → (𝜒 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1 6 | . . . . . 6 ⊢ (¬ 𝜒 → (¬ 𝜃 → ¬ 𝜒)) | |
2 | falim 1556 | . . . . . 6 ⊢ (⊥ → (¬ 𝜃 → ¬ 𝜒)) | |
3 | 1, 2 | ja 186 | . . . . 5 ⊢ ((𝜒 → ⊥) → (¬ 𝜃 → ¬ 𝜒)) |
4 | 3 | imim2i 16 | . . . 4 ⊢ (((𝜑 → 𝜓) → (𝜒 → ⊥)) → ((𝜑 → 𝜓) → (¬ 𝜃 → ¬ 𝜒))) |
5 | 4 | imim1i 63 | . . 3 ⊢ ((((𝜑 → 𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → (((𝜑 → 𝜓) → (𝜒 → ⊥)) → 𝜃)) |
6 | 5 | imim1i 63 | . 2 ⊢ (((((𝜑 → 𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((((𝜑 → 𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → 𝜏)) |
7 | meredith 1645 | . 2 ⊢ (((((𝜑 → 𝜓) → (¬ 𝜃 → ¬ 𝜒)) → 𝜃) → 𝜏) → ((𝜏 → 𝜑) → (𝜒 → 𝜑))) | |
8 | 6, 7 | syl 17 | 1 ⊢ (((((𝜑 → 𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((𝜏 → 𝜑) → (𝜒 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: merco1lem1 1718 retbwax2 1720 merco1lem2 1721 merco1lem4 1723 merco1lem5 1724 merco1lem6 1725 merco1lem7 1726 merco1lem10 1730 merco1lem11 1731 merco1lem12 1732 merco1lem13 1733 merco1lem14 1734 merco1lem16 1736 merco1lem17 1737 merco1lem18 1738 retbwax1 1739 |
Copyright terms: Public domain | W3C validator |