HomeHome Metamath Proof Explorer
Theorem List (p. 18 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 1701-1800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrenicax 1701 A rederivation of nic-ax 1677 from lukshef-ax1 1698, proving that lukshef-ax1 1698 with nic-mp 1675 can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ⊼ (𝜒𝜓)) ⊼ ((𝜏 ⊼ (𝜏𝜏)) ⊼ ((𝜃𝜒) ⊼ ((𝜑𝜃) ⊼ (𝜑𝜃)))))
 
1.3.8  Derive the Lukasiewicz Axioms from the Tarski-Bernays-Wajsberg Axioms
 
Theoremtbw-bijust 1702 Justification for tbw-negdf 1703. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) ↔ (((𝜑𝜓) → ((𝜓𝜑) → ⊥)) → ⊥))
 
Theoremtbw-negdf 1703 The definition of negation, in terms of and . (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥)
 
Theoremtbw-ax1 1704 The first of four axioms in the Tarski-Bernays-Wajsberg system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremtbw-ax2 1705 The second of four axioms in the Tarski-Bernays-Wajsberg system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜑))
 
Theoremtbw-ax3 1706 The third of four axioms in the Tarski-Bernays-Wajsberg system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜑) → 𝜑)
 
Theoremtbw-ax4 1707 The fourth of four axioms in the Tarski-Bernays-Wajsberg system.

This axiom was added to the Tarski-Bernays axiom system (see tb-ax1 34499, tb-ax2 34500, and tb-ax3 34501) by Wajsberg for completeness. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(⊥ → 𝜑)
 
Theoremtbwsyl 1708 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜓𝜒)       (𝜑𝜒)
 
Theoremtbwlem1 1709 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
 
Theoremtbwlem2 1710 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓 → ⊥)) → (((𝜑𝜒) → 𝜃) → (𝜓𝜃)))
 
Theoremtbwlem3 1711 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((((𝜑 → ⊥) → 𝜑) → 𝜑) → 𝜓) → 𝜓)
 
Theoremtbwlem4 1712 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑 → ⊥) → 𝜓) → ((𝜓 → ⊥) → 𝜑))
 
Theoremtbwlem5 1713 Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑)
 
Theoremre1luk1 1714 luk-1 1659 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremre1luk2 1715 luk-2 1660 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑𝜑) → 𝜑)
 
Theoremre1luk3 1716 luk-3 1661 derived from the Tarski-Bernays-Wajsberg axioms.

This theorem, along with re1luk1 1714 and re1luk2 1715 proves that tbw-ax1 1704, tbw-ax2 1705, tbw-ax3 1706, and tbw-ax4 1707, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜑 → (¬ 𝜑𝜓))
 
1.3.9  Derive the Tarski-Bernays-Wajsberg axioms from Meredith's First CO Axiom
 
Theoremmerco1 1717 A single axiom for propositional calculus discovered by C. A. Meredith.

This axiom is worthy of note, due to it having only 19 symbols, not counting parentheses. The more well-known meredith 1645 has 21 symbols, sans parentheses.

See merco2 1740 for another axiom of equal length. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(((((𝜑𝜓) → (𝜒 → ⊥)) → 𝜃) → 𝜏) → ((𝜏𝜑) → (𝜒𝜑)))
 
Theoremmerco1lem1 1718 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (⊥ → 𝜒))
 
Theoremretbwax4 1719 tbw-ax4 1707 rederived from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(⊥ → 𝜑)
 
Theoremretbwax2 1720 tbw-ax2 1705 rederived from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜑))
 
Theoremmerco1lem2 1721 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) → (((𝜓𝜏) → (𝜑 → ⊥)) → 𝜒))
 
Theoremmerco1lem3 1722 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → (𝜒 → ⊥)) → (𝜒𝜑))
 
Theoremmerco1lem4 1723 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) → (𝜓𝜒))
 
Theoremmerco1lem5 1724 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((((𝜑 → ⊥) → 𝜒) → 𝜏) → (𝜑𝜏))
 
Theoremmerco1lem6 1725 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜑𝜓)) → (𝜒 → (𝜑𝜓)))
 
Theoremmerco1lem7 1726 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (((𝜓𝜒) → 𝜓) → 𝜓))
 
Theoremretbwax3 1727 tbw-ax3 1706 rederived from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜑) → 𝜑)
 
Theoremmerco1lem8 1728 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 17-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ((𝜓 → (𝜓𝜒)) → (𝜓𝜒)))
 
Theoremmerco1lem9 1729 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
 
Theoremmerco1lem10 1730 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((((𝜑𝜓) → 𝜒) → (𝜏𝜒)) → 𝜑) → (𝜃𝜑))
 
Theoremmerco1lem11 1731 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (((𝜒 → (𝜑𝜏)) → ⊥) → 𝜓))
 
Theoremmerco1lem12 1732 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (((𝜒 → (𝜑𝜏)) → 𝜑) → 𝜓))
 
Theoremmerco1lem13 1733 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((((𝜑𝜓) → (𝜒𝜓)) → 𝜏) → (𝜑𝜏))
 
Theoremmerco1lem14 1734 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((((𝜑𝜓) → 𝜓) → 𝜒) → (𝜑𝜒))
 
Theoremmerco1lem15 1735 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (𝜑 → (𝜒𝜓)))
 
Theoremmerco1lem16 1736 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑 → (𝜓𝜒)) → 𝜏) → ((𝜑𝜒) → 𝜏))
 
Theoremmerco1lem17 1737 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((((𝜑𝜓) → 𝜑) → 𝜒) → 𝜏) → ((𝜑𝜒) → 𝜏))
 
Theoremmerco1lem18 1738 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1717. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜓𝜑) → (𝜓𝜒)))
 
Theoremretbwax1 1739 tbw-ax1 1704 rederived from merco1 1717.

This theorem, along with retbwax2 1720, retbwax3 1727, and retbwax4 1719, shows that merco1 1717 with ax-mp 5 can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
1.3.10  Derive the Tarski-Bernays-Wajsberg axioms from Meredith's Second CO Axiom
 
Theoremmerco2 1740 A single axiom for propositional calculus discovered by C. A. Meredith.

This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1717. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(((𝜑𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃𝜑) → (𝜏 → (𝜂𝜑))))
 
Theoremmercolem1 1741 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) → (𝜓 → (𝜃𝜒)))
 
Theoremmercolem2 1742 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜑) → (𝜒 → (𝜃𝜑)))
 
Theoremmercolem3 1743 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜓𝜒) → (𝜓 → (𝜑𝜒)))
 
Theoremmercolem4 1744 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜃 → (𝜂𝜑)) → (((𝜃𝜒) → 𝜑) → (𝜏 → (𝜂𝜑))))
 
Theoremmercolem5 1745 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜃 → ((𝜃𝜑) → (𝜏 → (𝜒𝜑))))
 
Theoremmercolem6 1746 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓 → (𝜑𝜒))) → (𝜓 → (𝜑𝜒)))
 
Theoremmercolem7 1747 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (((𝜑𝜒) → (𝜃𝜓)) → (𝜃𝜓)))
 
Theoremmercolem8 1748 Used to rederive the Tarski-Bernays-Wajsberg axioms from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓 → (𝜑𝜒)) → (𝜏 → (𝜃 → (𝜑𝜒)))))
 
Theoremre1tbw1 1749 tbw-ax1 1704 rederived from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremre1tbw2 1750 tbw-ax2 1705 rederived from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜑))
 
Theoremre1tbw3 1751 tbw-ax3 1706 rederived from merco2 1740. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜑) → 𝜑)
 
Theoremre1tbw4 1752 tbw-ax4 1707 rederived from merco2 1740.

This theorem, along with re1tbw1 1749, re1tbw2 1750, and re1tbw3 1751, shows that merco2 1740, along with ax-mp 5, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(⊥ → 𝜑)
 
1.3.11  Derive the Lukasiewicz axioms from the Russell-Bernays Axioms
 
Theoremrb-bijust 1753 Justification for rb-imdf 1754. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) ↔ ¬ (¬ (¬ 𝜑𝜓) ∨ ¬ (¬ 𝜓𝜑)))
 
Theoremrb-imdf 1754 The definition of implication, in terms of and ¬. (Contributed by Anthony Hart, 17-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (¬ (¬ (𝜑𝜓) ∨ (¬ 𝜑𝜓)) ∨ ¬ (¬ (¬ 𝜑𝜓) ∨ (𝜑𝜓)))
 
Theoremanmp 1755 Modus ponens for { ∨ , ¬ } axiom systems. (Contributed by Anthony Hart, 12-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   𝜑𝜓)       𝜓
 
Theoremrb-ax1 1756 The first of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (¬ 𝜓𝜒) ∨ (¬ (𝜑𝜓) ∨ (𝜑𝜒)))
 
Theoremrb-ax2 1757 The second of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (𝜑𝜓) ∨ (𝜓𝜑))
 
Theoremrb-ax3 1758 The third of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑 ∨ (𝜓𝜑))
 
Theoremrb-ax4 1759 The fourth of four axioms in the Russell-Bernays axiom system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (𝜑𝜑) ∨ 𝜑)
 
Theoremrbsyl 1760 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜓𝜒)    &   (𝜑𝜓)       (𝜑𝜒)
 
Theoremrblem1 1761 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑𝜓)    &   𝜒𝜃)       (¬ (𝜑𝜒) ∨ (𝜓𝜃))
 
Theoremrblem2 1762 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (𝜒𝜑) ∨ (𝜒 ∨ (𝜑𝜓)))
 
Theoremrblem3 1763 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (𝜒𝜑) ∨ ((𝜒𝜓) ∨ 𝜑))
 
Theoremrblem4 1764 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 18-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑𝜃)    &   𝜓𝜏)    &   𝜒𝜂)       (¬ ((𝜑𝜓) ∨ 𝜒) ∨ ((𝜂𝜏) ∨ 𝜃))
 
Theoremrblem5 1765 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ (¬ ¬ 𝜑𝜓) ∨ (¬ ¬ 𝜓𝜑))
 
Theoremrblem6 1766 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (¬ (¬ 𝜑𝜓) ∨ ¬ (¬ 𝜓𝜑))       𝜑𝜓)
 
Theoremrblem7 1767 Used to rederive the Lukasiewicz axioms from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (¬ (¬ 𝜑𝜓) ∨ ¬ (¬ 𝜓𝜑))       𝜓𝜑)
 
Theoremre1axmp 1768 ax-mp 5 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑    &   (𝜑𝜓)       𝜓
 
Theoremre2luk1 1769 luk-1 1659 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
 
Theoremre2luk2 1770 luk-2 1660 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑𝜑) → 𝜑)
 
Theoremre2luk3 1771 luk-3 1661 derived from Russell-Bernays'.

This theorem, along with re1axmp 1768, re2luk1 1769, and re2luk2 1770 shows that rb-ax1 1756, rb-ax2 1757, rb-ax3 1758, and rb-ax4 1759, along with anmp 1755, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜑 → (¬ 𝜑𝜓))
 
1.3.12  Stoic logic non-modal portion (Chrysippus of Soli)

The Greek Stoics developed a system of logic called Stoic logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic, https://www.historyoflogic.com/logic-stoics.htm).

In this section we show that the propositional logic system we use (which is non-modal) is at least as strong as the non-modal portion of Stoic logic. We show this by showing that our system assumes or proves all of key features of Stoic logic's non-modal portion (specifically the Stoic logic indemonstrables, themata, and principles).

"In terms of contemporary logic, Stoic syllogistic is best understood as a substructural backwards-working Gentzen-style natural-deduction system that consists of five kinds of axiomatic arguments (the indemonstrables) and four inference rules, called themata. An argument is a syllogism precisely if it either is an indemonstrable or can be reduced to one by means of the themata (Diogenes Laertius (D. L. 7.78))." (Ancient Logic, Stanford Encyclopedia of Philosophy https://plato.stanford.edu/entries/logic-ancient/). There are also a few "principles" that support logical reasoning, discussed below. For more information, see "Stoic Logic" by Susanne Bobzien, especially [Bobzien] p. 110-120, especially for a discussion about the themata (including how they were reconstructed and how they were used). There are differences in the systems we can only partly represent, for example, in Stoic logic "truth and falsehood are temporal properties of assertibles... They can belong to an assertible at one time but not at another" ([Bobzien] p. 87). Stoic logic also included various kinds of modalities, which we do not include here since our basic propositional logic does not include modalities.

A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 196, modus ponendo tollens I mptnan 1772, modus ponendo tollens II mptxor 1773, and modus tollendo ponens (exclusive-or version) mtpxor 1775. The first is an axiom, the second is already proved; in this section we prove the other three. Note that modus tollendo ponens mtpxor 1775 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1774.

After we prove the indemonstratables, we then prove all the Stoic logic themata (the inference rules of Stoic logic; "thema" is singular). This is straightforward for thema 1 (stoic1a 1776 and stoic1b 1777) and thema 3 (stoic3 1780). However, while Stoic logic was once a leading logic system, most direct information about Stoic logic has since been lost, including the exact texts of thema 2 and thema 4. There are, however, enough references and specific examples to support reconstruction. Themata 2 and 4 have been reconstructed; see statements T2 and T4 in [Bobzien] p. 110-120 and our proofs of them in stoic2a 1778, stoic2b 1779, stoic4a 1781, and stoic4b 1782.

Stoic logic also had a set of principles involving assertibles. Statements in [Bobzien] p. 99 express the known principles. The following paragraphs discuss these principles and our proofs of them.

"A principle of double negation, expressed by saying that a double-negation (Not: not: p) is equivalent to the assertible that is doubly negated (p) (DL VII 69)." In other words, (𝜑 ↔ ¬ ¬ 𝜑) as proven in notnotb 314.

"The principle that all conditionals that are formed by using the same assertible twice (like 'If p, p') are true (Cic. Acad. II 98)." In other words, (𝜑𝜑) as proven in id 22.

"The principle that all disjunctions formed by a contradiction (like 'Either p or not: p') are true (S. E. M VIII 282)." Remember that in Stoic logic, 'or' means 'exclusive or'. In other words, (𝜑 ⊻ ¬ 𝜑) as proven in xorexmid 1521.

[Bobzien] p. 99 also suggests that Stoic logic may have dealt with commutativity (see xorcom 1506 and ancom 460) and the principle of contraposition (con4 113) (pointing to DL VII 194).

In short, the non-modal propositional logic system we use is at least as strong as the non-modal portion of Stoic logic.

For more about Aristotle's system, see barbara 2664 and related theorems.

 
Theoremmptnan 1772 Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1773) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.)
𝜑    &    ¬ (𝜑𝜓)        ¬ 𝜓
 
Theoremmptxor 1773 Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or . See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 12-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
𝜑    &   (𝜑𝜓)        ¬ 𝜓
 
Theoremmtpor 1774 Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1775, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if 𝜑 is not true, and 𝜑 or 𝜓 (or both) are true, then 𝜓 must be true". An alternate phrasing is: "once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth". -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.)
¬ 𝜑    &   (𝜑𝜓)       𝜓
 
Theoremmtpxor 1775 Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1774, one of the five "indemonstrables" in Stoic logic. The rule says: "if 𝜑 is not true, and either 𝜑 or 𝜓 (exclusively) are true, then 𝜓 must be true". Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1774. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1773, that is, it is exclusive-or df-xor 1504), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1773), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
¬ 𝜑    &   (𝜑𝜓)       𝜓
 
Theoremstoic1a 1776 Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1776 and stoic1b 1777 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

((𝜑𝜓) → 𝜃)       ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)
 
Theoremstoic1b 1777 Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see stoic1a 1776. (Contributed by David A. Wheeler, 16-Feb-2019.)
((𝜑𝜓) → 𝜃)       ((𝜓 ∧ ¬ 𝜃) → ¬ 𝜑)
 
Theoremstoic2a 1778 Stoic logic Thema 2 version a. Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two." Bobzien uses constructs such as 𝜑, 𝜓𝜒; in Metamath we will represent that construct as 𝜑𝜓𝜒. This version a is without the phrase "or both"; see stoic2b 1779 for the version with the phrase "or both". We already have this rule as syldan 590, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremstoic2b 1779 Stoic logic Thema 2 version b. See stoic2a 1778. Version b is with the phrase "or both". We already have this rule as mpd3an3 1460, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜓𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremstoic3 1780 Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.)
((𝜑𝜓) → 𝜒)    &   ((𝜒𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
Theoremstoic4a 1781 Stoic logic Thema 4 version a. Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic Thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use 𝜃 to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1782 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   ((𝜒𝜑𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
Theoremstoic4b 1782 Stoic logic Thema 4 version b. This is version b, which is with the phrase "or both". See stoic4a 1781 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)
((𝜑𝜓) → 𝜒)    &   (((𝜒𝜑𝜓) ∧ 𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
1.4  Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)

Here we extend the language of wffs with predicate calculus, which allows us to talk about individual objects in a domain of discourse (which for us will be the universe of all sets, so we call them "setvar variables") and make true/false statements about predicates, which are relationships between objects, such as whether or not two objects are equal. In addition, we introduce universal quantification ("for all", e.g., ax-4 1813) in order to make statements about whether a wff holds for every object in the domain of discourse. Later we introduce existential quantification ("there exists", df-ex 1784) which is defined in terms of universal quantification.

Our axioms are really axiom schemes, and our wff and setvar variables are metavariables ranging over expressions in an underlying "object language". This is explained here: mmset.html#axiomnote 1784.

Our axiom system starts with the predicate calculus axiom schemes system S2 of Tarski defined in his 1965 paper, "A Simplified Formalization of Predicate Logic with Identity" [Tarski]. System S2 is defined in the last paragraph on p. 77, and repeated on p. 81 of [KalishMontague]. We do not include scheme B5 (our sp 2178) of system S2 since [KalishMontague] shows it to be logically redundant (Lemma 9, p. 87, which we prove as Theorem spw 2038 below).

Theorem spw 2038 can be used to prove any instance of sp 2178 having mutually distinct setvar variables and no wff metavariables. However, it seems that sp 2178 in its general form cannot be derived from only Tarski's schemes. We do not include B5 i.e. sp 2178 as part of what we call "Tarski's system" because we want it to be the smallest set of axioms that is logically complete with no redundancies. We later prove sp 2178 as Theorem axc5 36834 using the auxiliary axiom schemes that make our system metalogically complete.

Our version of Tarski's system S2 consists of propositional calculus (ax-mp 5, ax-1 6, ax-2 7, ax-3 8) plus ax-gen 1799, ax-4 1813, ax-5 1914, ax-6 1972, ax-7 2012, ax-8 2110, and ax-9 2118. The last three are equality axioms that represent three sub-schemes of Tarski's scheme B8. Due to its side-condition ("where 𝜑 is an atomic formula and 𝜓 is obtained by replacing an occurrence of the variable 𝑥 by the variable 𝑦"), we cannot represent his B8 directly without greatly complicating our scheme language, but the simpler schemes ax-7 2012, ax-8 2110, and ax-9 2118 are sufficient for set theory and much easier to work with.

Tarski's system is exactly equivalent to the traditional axiom system in most logic textbooks but has the advantage of being easy to manipulate with a computer program, and its simpler metalogic (with no built-in notions of "free variable" and "proper substitution") is arguably easier for a non-logician human to follow step by step in a proof (where "follow" means being able to identify the substitutions that were made, without necessarily a higher-level understanding). In particular, it is logically complete in that it can derive all possible object-language theorems of predicate calculus with equality, i.e., the same theorems as the traditional system can derive.

However, for efficiency (and indeed a key feature that makes Metamath successful), our system is designed to derive reusable theorem schemes (rather than object-language theorems) from other schemes. From this "metalogical" point of view, Tarski's S2 is not complete. For example, we cannot derive scheme sp 2178, even though (using spw 2038) we can derive all instances of it that do not involve wff metavariables or bundled setvar variables. (Two setvar variables are "bundled" if they can be substituted with the same setvar variable, i.e., do not have a "$d" disjoint variable condition.) Later we will introduce auxiliary axiom schemes ax-10 2139, ax-11 2156, ax-12 2173, and ax-13 2372 that are metatheorems of Tarski's system (i.e. are logically redundant) but which give our system the property of "scheme completeness", allowing us to prove directly (instead of, say, by induction on formula length) all possible schemes that can be expressed in our language.

 
1.4.1  Universal quantifier (continued); define "exists" and "not free"

The universal quantifier was introduced above in wal 1537 for use by df-tru 1542. See the comments in that section. In this section, we continue with the first "real" use of it.

 
1.4.1.1  Existential quantifier
 
Syntaxwex 1783 Extend wff definition to include the existential quantifier ("there exists").
wff 𝑥𝜑
 
Definitiondf-ex 1784 Define existential quantification. 𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". Dual of alex 1829. See also the dual pair alnex 1785 / exnal 1830. Definition of [Margaris] p. 49. (Contributed by NM, 10-Jan-1993.)
(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
 
Theoremalnex 1785 Universal quantification of negation is equivalent to negation of existential quantification. Dual of exnal 1830 (but does not depend on ax-4 1813 contrary to it). See also the dual pair df-ex 1784 / alex 1829. Theorem 19.7 of [Margaris] p. 89. (Contributed by NM, 12-Mar-1993.)
(∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremeximal 1786 An equivalence between an implication with an existentially quantified antecedent and an implication with a universally quantified consequent. An interesting case is when the same formula is substituted for both 𝜑 and 𝜓, since then both implications express a type of nonfreeness. See also alimex 1834. (Contributed by BJ, 12-May-2019.)
((∃𝑥𝜑𝜓) ↔ (¬ 𝜓 → ∀𝑥 ¬ 𝜑))
 
1.4.1.2  Nonfreeness predicate
 
Syntaxwnf 1787 Extend wff definition to include the not-free predicate.
wff 𝑥𝜑
 
Definitiondf-nf 1788 Define the not-free predicate for wffs. This is read "𝑥 is not free in 𝜑". Not-free means that the value of 𝑥 cannot affect the value of 𝜑, e.g., any occurrence of 𝑥 in 𝜑 is effectively bound by a "for all" or something that expands to one (such as "there exists"). In particular, substitution for a variable not free in a wff does not affect its value (sbf 2266). An example of where this is used is stdpc5 2204. See nf5 2282 for an alternate definition which involves nested quantifiers on the same variable.

Not-free is a commonly used constraint, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the not-free notion within the logic itself rather than as a metalogical side condition.

To be precise, our definition really means "effectively not free", because it is slightly less restrictive than the usual textbook definition for "not free" (which considers syntactic freedom). For example, 𝑥 is effectively not free in the formula 𝑥 = 𝑥 (even though 𝑥 is syntactically free in it, so would be considered free in the usual textbook definition) because the value of 𝑥 in the formula 𝑥 = 𝑥 does not affect the truth of that formula (and thus substitutions will not change the result), see nfequid 2017.

This definition of "not free" tightly ties to the quantifier 𝑥. At this state (no axioms restricting quantifiers yet) "nonfree" appears quite arbitrary. Its intended semantics expresses single-valuedness (constness) across a parameter, but is only evolved as much as later axioms assign properties to quantifiers. It seems the definition here is best suited in situations, where axioms are only partially in effect. In particular, this definition more easily carries over to other logic models with weaker axiomization.

The reverse implication of the definiens (the right hand side of the biconditional) always holds, see 19.2 1981.

This predicate only applies to wffs. See df-nfc 2888 for a not-free predicate for class variables. (Contributed by Mario Carneiro, 24-Sep-2016.) Convert to definition. (Revised by BJ, 6-May-2019.)

(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theoremnf2 1789 Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021.)
(Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
 
Theoremnf3 1790 Alternate definition of nonfreeness. (Contributed by BJ, 16-Sep-2021.)
(Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
 
Theoremnf4 1791 Alternate definition of nonfreeness. This definition uses only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 16-Sep-2021.)
(Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremnfi 1792 Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Wolf Lammen, 15-Sep-2021.)
(∃𝑥𝜑 → ∀𝑥𝜑)       𝑥𝜑
 
Theoremnfri 1793 Consequence of the definition of not-free. (Contributed by Wolf Lammen, 16-Sep-2021.)
𝑥𝜑       (∃𝑥𝜑 → ∀𝑥𝜑)
 
Theoremnfd 1794 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.)
(𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremnfrd 1795 Consequence of the definition of not-free in a context. (Contributed by Wolf Lammen, 15-Oct-2021.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))
 
Theoremnftht 1796 Closed form of nfth 1805. (Contributed by Wolf Lammen, 19-Aug-2018.) (Proof shortened by BJ, 16-Sep-2021.) (Proof shortened by Wolf Lammen, 3-Sep-2022.)
(∀𝑥𝜑 → Ⅎ𝑥𝜑)
 
Theoremnfntht 1797 Closed form of nfnth 1806. (Contributed by BJ, 16-Sep-2021.) (Proof shortened by Wolf Lammen, 4-Sep-2022.)
(¬ ∃𝑥𝜑 → Ⅎ𝑥𝜑)
 
Theoremnfntht2 1798 Closed form of nfnth 1806. (Contributed by BJ, 16-Sep-2021.) (Proof shortened by Wolf Lammen, 4-Sep-2022.)
(∀𝑥 ¬ 𝜑 → Ⅎ𝑥𝜑)
 
1.4.2  Rule scheme ax-gen (Generalization)
 
Axiomax-gen 1799 Rule of (universal) generalization. In our axiomatization, this is the only postulated (that is, axiomatic) rule of inference of predicate calculus (together with the rule of modus ponens ax-mp 5 of propositional calculus). See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, then we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem altru 1811 shows the special case 𝑥. The converse rule of inference spi 2179 (universal instantiation, or universal specialization) shows that we can also go the other way: in other words, we can add or remove universal quantifiers from the beginning of any theorem as required. Note that the closed form (𝜑 → ∀𝑥𝜑) need not hold (but may hold in special cases, see ax-5 1914). (Contributed by NM, 3-Jan-1993.)
𝜑       𝑥𝜑
 
Theoremgen2 1800 Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
𝜑       𝑥𝑦𝜑
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >