![]() |
Metamath
Proof Explorer Theorem List (p. 18 of 435) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28329) |
![]() (28330-29854) |
![]() (29855-43446) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | trunanfal 1701 | A ⊼ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
⊢ ((⊤ ⊼ ⊥) ↔ ⊤) | ||
Theorem | falnantru 1702 | A ⊼ identity. (Contributed by Anthony Hart, 23-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((⊥ ⊼ ⊤) ↔ ⊤) | ||
Theorem | falnanfal 1703 | A ⊼ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((⊥ ⊼ ⊥) ↔ ⊤) | ||
Theorem | truxortru 1704 | A ⊻ identity. (Contributed by David A. Wheeler, 8-May-2015.) |
⊢ ((⊤ ⊻ ⊤) ↔ ⊥) | ||
Theorem | truxorfal 1705 | A ⊻ identity. (Contributed by David A. Wheeler, 8-May-2015.) |
⊢ ((⊤ ⊻ ⊥) ↔ ⊤) | ||
Theorem | falxortru 1706 | A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) (Proof shortened by Wolf Lammen, 10-Jul-2020.) |
⊢ ((⊥ ⊻ ⊤) ↔ ⊤) | ||
Theorem | falxorfal 1707 | A ⊻ identity. (Contributed by David A. Wheeler, 9-May-2015.) |
⊢ ((⊥ ⊻ ⊥) ↔ ⊥) | ||
Propositional calculus deals with truth values, which can be interpreted as bits. Using this, we can define the half adder and the full adder in pure propositional calculus, and show their basic properties. The half adder adds two 1-bit numbers. Its two outputs are the "sum" S and the "carry" C. The real sum is then given by 2C+S. The sum and carry correspond respectively to the logical exclusive disjunction (df-xor 1640) and the logical conjunction (df-an 387). The full adder takes into account an "input carry", so it has three inputs and again two outputs, corresponding to the "sum" (df-had 1709) and "updated carry" (df-cad 1722). Here is a short description. We code the bit 0 by ⊥ and 1 by ⊤. Even though hadd and cadd are invariant under permutation of their arguments, assume for the sake of concreteness that 𝜑 (resp. 𝜓) is the i^th bit of the first (resp. second) number to add (with the convention that the i^th bit is the multiple of 2^i in the base-2 representation), and that 𝜒 is the i^th carry (with the convention that the 0^th carry is 0). Then, hadd(𝜑, 𝜓, 𝜒) gives the i^th bit of the sum, and cadd(𝜑, 𝜓, 𝜒) gives the (i+1)^th carry. Then, addition is performed by iteration from i = 0 to i = 1 + (max of the number of digits of the two summands) by "updating" the carry. | ||
Syntax | whad 1708 | Syntax for the "sum" output of the full adder. (Contributed by Mario Carneiro, 4-Sep-2016.) |
wff hadd(𝜑, 𝜓, 𝜒) | ||
Definition | df-had 1709 | Definition of the "sum" output of the full adder (triple exclusive disjunction, or XOR3). (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) | ||
Theorem | hadbi123d 1710 | Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → (hadd(𝜓, 𝜃, 𝜂) ↔ hadd(𝜒, 𝜏, 𝜁))) | ||
Theorem | hadbi123i 1711 | Equality theorem for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) & ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ (hadd(𝜑, 𝜒, 𝜏) ↔ hadd(𝜓, 𝜃, 𝜂)) | ||
Theorem | hadass 1712 | Associative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ⊻ (𝜓 ⊻ 𝜒))) | ||
Theorem | hadbi 1713 | The adder sum is the same as the triple biconditional. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ↔ 𝜓) ↔ 𝜒)) | ||
Theorem | hadcoma 1714 | Commutative law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) | ||
Theorem | hadcomb 1715 | Commutative law for the adders sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜑, 𝜒, 𝜓)) | ||
Theorem | hadrot 1716 | Rotation law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | ||
Theorem | hadnot 1717 | The adder sum distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
⊢ (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) | ||
Theorem | had1 1718 | If the first input is true, then the adder sum is equivalent to the biconditionality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
⊢ (𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ↔ 𝜒))) | ||
Theorem | had0 1719 | If the first input is false, then the adder sum is equivalent to the exclusive disjunction of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
⊢ (¬ 𝜑 → (hadd(𝜑, 𝜓, 𝜒) ↔ (𝜓 ⊻ 𝜒))) | ||
Theorem | hadifp 1720 | The value of the adder sum is, if the first input is true, the biconditionality, and if the first input is false, the exclusive disjunction, of the other two inputs. (Contributed by BJ, 11-Aug-2020.) |
⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, (𝜓 ↔ 𝜒), (𝜓 ⊻ 𝜒))) | ||
Syntax | wcad 1721 | Syntax for the "carry" output of the full adder. (Contributed by Mario Carneiro, 4-Sep-2016.) |
wff cadd(𝜑, 𝜓, 𝜒) | ||
Definition | df-cad 1722 | Definition of the "carry" output of the full adder. It is true when at least two arguments are true, so it is equal to the "majority" function on three variables. See cador 1723 and cadan 1724 for alternate definitions. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) | ||
Theorem | cador 1723 | The adder carry in disjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜑 ∧ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
Theorem | cadan 1724 | The adder carry in conjunctive normal form. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 25-Sep-2018.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜓 ∨ 𝜒))) | ||
Theorem | cadbi123d 1725 | Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → (cadd(𝜓, 𝜃, 𝜂) ↔ cadd(𝜒, 𝜏, 𝜁))) | ||
Theorem | cadbi123i 1726 | Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) & ⊢ (𝜏 ↔ 𝜂) ⇒ ⊢ (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)) | ||
Theorem | cadcoma 1727 | Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜑, 𝜒)) | ||
Theorem | cadcomb 1728 | Commutative law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜑, 𝜒, 𝜓)) | ||
Theorem | cadrot 1729 | Rotation law for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ cadd(𝜓, 𝜒, 𝜑)) | ||
Theorem | cadnot 1730 | The adder carry distributes over negation. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.) |
⊢ (¬ cadd(𝜑, 𝜓, 𝜒) ↔ cadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒)) | ||
Theorem | cad1 1731 | If one input is true, then the adder carry is true exactly when at least one of the other two inputs is true. (Contributed by Mario Carneiro, 8-Sep-2016.) (Proof shortened by Wolf Lammen, 19-Jun-2020.) |
⊢ (𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∨ 𝜓))) | ||
Theorem | cad0 1732 | If one input is false, then the adder carry is true exactly when both of the other two inputs are true. (Contributed by Mario Carneiro, 8-Sep-2016.) |
⊢ (¬ 𝜒 → (cadd(𝜑, 𝜓, 𝜒) ↔ (𝜑 ∧ 𝜓))) | ||
Theorem | cadifp 1733 | The value of the carry is, if the input carry is true, the disjunction, and if the input carry is false, the conjunction, of the other two inputs. (Contributed by BJ, 8-Oct-2019.) |
⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ if-(𝜒, (𝜑 ∨ 𝜓), (𝜑 ∧ 𝜓))) | ||
Theorem | cad11 1734 | If (at least) two inputs are true, then the adder carry is true. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ ((𝜑 ∧ 𝜓) → cadd(𝜑, 𝜓, 𝜒)) | ||
Theorem | cadtru 1735 | The adder carry is true as soon as its first two inputs are the truth constant. (Contributed by Mario Carneiro, 4-Sep-2016.) |
⊢ cadd(⊤, ⊤, 𝜑) | ||
Minimal implicational calculus, or intuitionistic implicational calculus, or positive implicational calculus, is the implicational fragment of minimal calculus (which is also the implicational fragment of intuitionistic calculus and of positive calculus). It is sometimes called "C-pure intuitionism" since the letter C is sometimes used to denote implication, especially in prefix notation. It can be axiomatized by the inference rule of modus ponens ax-mp 5 together with the axioms { ax-1 6, ax-2 7 } (sometimes written KS), or with { imim1 83, ax-1 6, pm2.43 56 } (written B'KW), or with { imim2 58, pm2.04 90, ax-1 6, pm2.43 56 } (written BCKW), or with the single axiom minimp 1736. This section proves minimp 1736 from { ax-1 6, ax-2 7 }, and then the converse, due to Ivo Thomas. Sources for this section are the webpage https://web.ics.purdue.edu/~dulrich/C-pure-intuitionism-page.htm on Ted Ulrich's website, and the articles C. A. Meredith, A single axiom of positive logic, Journal of computing systems, vol. 1 (1953), 169--170, and C. A. Meredith, A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, vol. 4 (1963), 171--187. We may use a compact notation for derivations known as the D-notation where "D" stands for "condensed Detachment". For instance, "D21" means detaching ax-1 6 from ax-2 7, that is, using modus ponens ax-mp 5 with ax-1 6 as minor premise and ax-2 7 as major premise. D-strings are accepted by the grammar Dstr := digit | "D" Dstr Dstr. (Contributed by BJ, 11-Apr-2021.) | ||
Theorem | minimp 1736 | A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. Among single axioms of this length, it is the one with simplest antecedents (i.e., in the corresponding ordering of binary trees which first compares left subtrees, it is the first one). (Contributed by BJ, 4-Apr-2021.) |
⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
Theorem | minimp-syllsimp 1737 | Derivation of Syll-Simp (jarr 106) from ax-mp 5 and minimp 1736. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜓 → 𝜒)) | ||
Theorem | minimp-ax1 1738 | Derivation of ax-1 6 from ax-mp 5 and minimp 1736. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Theorem | minimp-ax2c 1739 | Derivation of a commuted form of ax-2 7 from ax-mp 5 and minimp 1736. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
Theorem | minimp-ax2 1740 | Derivation of ax-2 7 from ax-mp 5 and minimp 1736. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | minimp-pm2.43 1741 | Derivation of pm2.43 56 (also called "hilbert" or W) from ax-mp 5 and minimp 1736. It uses the classical derivation from ax-1 6 and ax-2 7 written DD22D21 in D-notation (see head comment for an explanation) and shortens the proof using mp2 9 (which only requires ax-mp 5). (Contributed by BJ, 31-May-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | meredith 1742 |
Carew Meredith's sole axiom for propositional calculus. This amazing
formula is thought to be the shortest possible single axiom for
propositional calculus with inference rule ax-mp 5,
where negation and
implication are primitive. Here we prove Meredith's axiom from ax-1 6,
ax-2 7, and ax-3 8. Then from it we derive the Lukasiewicz
axioms
luk-1 1756, luk-2 1757, and luk-3 1758. Using these we finally rederive our
axioms as ax1 1767, ax2 1768, and ax3 1769,
thus proving the equivalence of all
three systems. C. A. Meredith, "Single Axioms for the Systems (C,N),
(C,O) and (A,N) of the Two-Valued Propositional Calculus", The
Journal of
Computing Systems vol. 1 (1953), pp. 155-164. Meredith claimed to be
close to a proof that this axiom is the shortest possible, but the proof
was apparently never completed.
An obscure Irish lecturer, Meredith (1904-1976) became enamored with logic somewhat late in life after attending talks by Lukasiewicz and produced many remarkable results such as this axiom. From his obituary: "He did logic whenever time and opportunity presented themselves, and he did it on whatever materials came to hand: in a pub, his favored pint of porter within reach, he would use the inside of cigarette packs to write proofs for logical colleagues." (Contributed by NM, 14-Dec-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof shortened by Wolf Lammen, 28-May-2013.) |
⊢ (((((𝜑 → 𝜓) → (¬ 𝜒 → ¬ 𝜃)) → 𝜒) → 𝜏) → ((𝜏 → 𝜑) → (𝜃 → 𝜑))) | ||
Theorem | merlem1 1743 | Step 3 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (The step numbers refer to Meredith's original paper.) (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜒 → (¬ 𝜑 → 𝜓)) → 𝜏) → (𝜑 → 𝜏)) | ||
Theorem | merlem2 1744 | Step 4 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜑) → 𝜒) → (𝜃 → 𝜒)) | ||
Theorem | merlem3 1745 | Step 7 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜓 → 𝜒) → 𝜑) → (𝜒 → 𝜑)) | ||
Theorem | merlem4 1746 | Step 8 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜏 → ((𝜏 → 𝜑) → (𝜃 → 𝜑))) | ||
Theorem | merlem5 1747 | Step 11 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (¬ ¬ 𝜑 → 𝜓)) | ||
Theorem | merlem6 1748 | Step 12 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜒 → (((𝜓 → 𝜒) → 𝜑) → (𝜃 → 𝜑))) | ||
Theorem | merlem7 1749 | Between steps 14 and 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (((𝜓 → 𝜒) → 𝜃) → (((𝜒 → 𝜏) → (¬ 𝜃 → ¬ 𝜓)) → 𝜃))) | ||
Theorem | merlem8 1750 | Step 15 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜓 → 𝜒) → 𝜃) → (((𝜒 → 𝜏) → (¬ 𝜃 → ¬ 𝜓)) → 𝜃)) | ||
Theorem | merlem9 1751 | Step 18 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) → (𝜒 → (𝜃 → (𝜓 → 𝜏)))) → (𝜂 → (𝜒 → (𝜃 → (𝜓 → 𝜏))))) | ||
Theorem | merlem10 1752 | Step 19 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜃 → (𝜑 → 𝜓))) | ||
Theorem | merlem11 1753 | Step 20 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | merlem12 1754 | Step 28 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → 𝜑) → 𝜑) | ||
Theorem | merlem13 1755 | Step 35 of Meredith's proof of Lukasiewicz axioms from his sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → (((𝜃 → (¬ ¬ 𝜒 → 𝜒)) → ¬ ¬ 𝜑) → 𝜓)) | ||
Theorem | luk-1 1756 | 1 of 3 axioms for propositional calculus due to Lukasiewicz, derived from Meredith's sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | luk-2 1757 | 2 of 3 axioms for propositional calculus due to Lukasiewicz, derived from Meredith's sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | luk-3 1758 | 3 of 3 axioms for propositional calculus due to Lukasiewicz, derived from Meredith's sole axiom. (Contributed by NM, 14-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | luklem1 1759 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 23-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | luklem2 1760 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → ¬ 𝜓) → (((𝜑 → 𝜒) → 𝜃) → (𝜓 → 𝜃))) | ||
Theorem | luklem3 1761 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (((¬ 𝜑 → 𝜓) → 𝜒) → (𝜃 → 𝜒))) | ||
Theorem | luklem4 1762 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((((¬ 𝜑 → 𝜑) → 𝜑) → 𝜓) → 𝜓) | ||
Theorem | luklem5 1763 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Theorem | luklem6 1764 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | luklem7 1765 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | luklem8 1766 | Used to rederive standard propositional axioms from Lukasiewicz'. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜒 → 𝜑) → (𝜒 → 𝜓))) | ||
Theorem | ax1 1767 | Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜑)) | ||
Theorem | ax2 1768 | Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | ax3 1769 | Standard propositional axiom derived from Lukasiewicz axioms. (Contributed by NM, 22-Dec-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
Prove Nicod's axiom and implication and negation definitions. | ||
Theorem | nic-dfim 1770 | This theorem "defines" implication in terms of 'nand'. Analogous to nanim 1623. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 → 𝜓)) ⊼ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜑 → 𝜓) ⊼ (𝜑 → 𝜓)))) | ||
Theorem | nic-dfneg 1771 | This theorem "defines" negation in terms of 'nand'. Analogous to nannot 1624. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ⊼ 𝜑) ⊼ ¬ 𝜑) ⊼ (((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑)) ⊼ (¬ 𝜑 ⊼ ¬ 𝜑))) | ||
Theorem | nic-mp 1772 | Derive Nicod's rule of modus ponens using 'nand', from the standard one. Although the major and minor premise together also imply 𝜒, this form is necessary for useful derivations from nic-ax 1774. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⇒ ⊢ 𝜓 | ||
Theorem | nic-mpALT 1773 | A direct proof of nic-mp 1772. (Contributed by NM, 30-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⇒ ⊢ 𝜓 | ||
Theorem | nic-ax 1774 | Nicod's axiom derived from the standard ones. See Introduction to Mathematical Philosophy by B. Russell, p. 152. Like meredith 1742, the usual axioms can be derived from this and vice versa. Unlike meredith 1742, Nicod uses a different connective ('nand'), so another form of modus ponens must be used in proofs, e.g. { nic-ax 1774, nic-mp 1772 } is equivalent to { luk-1 1756, luk-2 1757, luk-3 1758, ax-mp 5 }. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | nic-axALT 1775 | A direct proof of nic-ax 1774. (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | nic-imp 1776 | Inference for nic-mp 1772 using nic-ax 1774 as major premise. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⇒ ⊢ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | ||
Theorem | nic-idlem1 1777 | Lemma for nic-id 1779. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜃 ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ (((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃) ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃))) | ||
Theorem | nic-idlem2 1778 | Lemma for nic-id 1779. Inference used by nic-id 1779. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜂 ⊼ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ 𝜃)) ⇒ ⊢ ((𝜃 ⊼ (𝜏 ⊼ (𝜏 ⊼ 𝜏))) ⊼ 𝜂) | ||
Theorem | nic-id 1779 | Theorem id 22 expressed with ⊼. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜏 ⊼ (𝜏 ⊼ 𝜏)) | ||
Theorem | nic-swap 1780 | The connector ⊼ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) | ||
Theorem | nic-isw1 1781 | Inference version of nic-swap 1780. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜃 ⊼ 𝜑) ⇒ ⊢ (𝜑 ⊼ 𝜃) | ||
Theorem | nic-isw2 1782 | Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜓 ⊼ (𝜃 ⊼ 𝜑)) ⇒ ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜃)) | ||
Theorem | nic-iimp1 1783 | Inference version of nic-imp 1776 using right-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) & ⊢ (𝜃 ⊼ 𝜒) ⇒ ⊢ (𝜃 ⊼ 𝜑) | ||
Theorem | nic-iimp2 1784 | Inference version of nic-imp 1776 using left-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ 𝜓) ⊼ (𝜒 ⊼ 𝜒)) & ⊢ (𝜃 ⊼ 𝜑) ⇒ ⊢ (𝜃 ⊼ (𝜒 ⊼ 𝜒)) | ||
Theorem | nic-idel 1785 | Inference to remove the trailing term. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⇒ ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) | ||
Theorem | nic-ich 1786 | Chained inference. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) & ⊢ (𝜓 ⊼ (𝜒 ⊼ 𝜒)) ⇒ ⊢ (𝜑 ⊼ (𝜒 ⊼ 𝜒)) | ||
Theorem | nic-idbl 1787 | Double the terms. Since doubling is the same as negation, this can be viewed as a contraposition inference. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⇒ ⊢ ((𝜓 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜑 ⊼ 𝜑))) | ||
Theorem | nic-bijust 1788 | Biconditional justification from Nicod's axiom. For nic-* definitions, the biconditional connective is not used. Instead, definitions are made based on this form. nic-bi1 1789 and nic-bi2 1790 are used to convert the definitions into usable theorems about one side of the implication. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜏 ⊼ 𝜏) ⊼ ((𝜏 ⊼ 𝜏) ⊼ (𝜏 ⊼ 𝜏))) | ||
Theorem | nic-bi1 1789 | Inference to extract one side of an implication from a definition. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓))) ⇒ ⊢ (𝜑 ⊼ (𝜓 ⊼ 𝜓)) | ||
Theorem | nic-bi2 1790 | Inference to extract the other side of an implication from a 'biconditional' definition. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓))) ⇒ ⊢ (𝜓 ⊼ (𝜑 ⊼ 𝜑)) | ||
Theorem | nic-stdmp 1791 | Derive the standard modus ponens from nic-mp 1772. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | nic-luk1 1792 | Proof of luk-1 1756 from nic-ax 1774 and nic-mp 1772 (and definitions nic-dfim 1770 and nic-dfneg 1771). Note that the standard axioms ax-1 6, ax-2 7, and ax-3 8 are proved from the Lukasiewicz axioms by theorems ax1 1767, ax2 1768, and ax3 1769. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) | ||
Theorem | nic-luk2 1793 | Proof of luk-2 1757 from nic-ax 1774 and nic-mp 1772. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | ||
Theorem | nic-luk3 1794 | Proof of luk-3 1758 from nic-ax 1774 and nic-mp 1772. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | ||
Theorem | lukshef-ax1 1795 |
This alternative axiom for propositional calculus using the Sheffer Stroke
was discovered by Lukasiewicz in his Selected Works. It improves on
Nicod's axiom by reducing its number of variables by one.
This axiom also uses nic-mp 1772 for its constructions. Here, the axiom is proved as a substitution instance of nic-ax 1774. (Contributed by Anthony Hart, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜃 ⊼ (𝜃 ⊼ 𝜃)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | lukshefth1 1796 | Lemma for renicax 1798. (Contributed by NM, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((((𝜏 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜏) ⊼ (𝜑 ⊼ 𝜏))) ⊼ (𝜃 ⊼ (𝜃 ⊼ 𝜃))) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜒))) | ||
Theorem | lukshefth2 1797 | Lemma for renicax 1798. (Contributed by NM, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜏 ⊼ 𝜃) ⊼ ((𝜃 ⊼ 𝜏) ⊼ (𝜃 ⊼ 𝜏))) | ||
Theorem | renicax 1798 | A rederivation of nic-ax 1774 from lukshef-ax1 1795, proving that lukshef-ax1 1795 with nic-mp 1772 can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 31-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ⊼ (𝜒 ⊼ 𝜓)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜒) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | ||
Theorem | tbw-bijust 1799 | Justification for tbw-negdf 1800. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ↔ 𝜓) ↔ (((𝜑 → 𝜓) → ((𝜓 → 𝜑) → ⊥)) → ⊥)) | ||
Theorem | tbw-negdf 1800 | The definition of negation, in terms of → and ⊥. (Contributed by Anthony Hart, 15-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |