MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  merco1lem9 Structured version   Visualization version   GIF version

Theorem merco1lem9 1728
Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1716. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
merco1lem9 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem merco1lem9
StepHypRef Expression
1 merco1lem8 1727 . 2 ((⊥ → 𝜑) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
2 merco1lem8 1727 . 2 (((⊥ → 𝜑) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))) → ((𝜑 → (𝜑𝜓)) → (𝜑𝜓)))
31, 2ax-mp 5 1 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wfal 1551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-tru 1542  df-fal 1552
This theorem is referenced by:  merco1lem12  1731  merco1lem14  1733  merco1lem17  1736  merco1lem18  1737  retbwax1  1738
  Copyright terms: Public domain W3C validator