|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > merco1lem9 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Tarski-Bernays-Wajsberg axioms from merco1 1712. (Contributed by Anthony Hart, 18-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| merco1lem9 | ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | merco1lem8 1723 | . 2 ⊢ ((⊥ → 𝜑) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) | |
| 2 | merco1lem8 1723 | . 2 ⊢ (((⊥ → 𝜑) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) → ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: merco1lem12 1727 merco1lem14 1729 merco1lem17 1732 merco1lem18 1733 retbwax1 1734 | 
| Copyright terms: Public domain | W3C validator |