MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modal5 Structured version   Visualization version   GIF version

Theorem modal5 2155
Description: The analogue in our predicate calculus of axiom (5) of modal logic S5. See also hbe1 2142. (Contributed by NM, 5-Oct-2005.)
Assertion
Ref Expression
modal5 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)

Proof of Theorem modal5
StepHypRef Expression
1 hbn1 2141 1 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539
This theorem was proved from axioms:  ax-10 2140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator