Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnf1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2174. (Revised by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1790 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfe1 2150 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
3 | nfa1 2151 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
4 | 2, 3 | nfim 1902 | . 2 ⊢ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑) |
5 | 1, 4 | nfxfr 1858 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∃wex 1785 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-10 2140 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 |
This theorem is referenced by: sb4bOLD 2477 nfsb4t 2504 nfnfc1 2911 nfabdwOLD 2932 sbcnestgfw 4357 sbcnestgf 4362 bj-sbf4 35002 wl-equsal1t 35679 wl-sb6rft 35682 wl-sb8t 35686 wl-mo2tf 35705 wl-eutf 35707 wl-mo2t 35709 wl-mo3t 35710 wl-sb8eut 35711 ichnfimlem 44867 ichnfim 44868 |
Copyright terms: Public domain | W3C validator |