MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2152
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2172. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1787 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2148 . . 3 𝑥𝑥𝜑
3 nfa1 2149 . . 3 𝑥𝑥𝜑
42, 3nfim 1900 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1856 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-10 2138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfsb4t  2499  nfnfc1  2907  nfabdwOLD  2928  sbcnestgfw  4419  sbcnestgf  4424  bj-sbf4  35718  wl-equsal1t  36410  wl-sb6rft  36413  wl-sb8t  36417  wl-mo2tf  36436  wl-eutf  36438  wl-mo2t  36440  wl-mo3t  36441  wl-sb8eut  36442  ichnfimlem  46131  ichnfim  46132
  Copyright terms: Public domain W3C validator