MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2157
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2180. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1785 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2153 . . 3 𝑥𝑥𝜑
3 nfa1 2154 . . 3 𝑥𝑥𝜑
42, 3nfim 1897 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1854 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-10 2144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfsb4t  2499  nfnfc1  2897  sbcnestgfw  4368  sbcnestgf  4373  bj-sbf4  36884  wl-equsal1t  37586  wl-sbid2ft  37589  wl-sb8t  37596  wl-mo2tf  37615  wl-eutf  37617  wl-mo2t  37619  wl-mo3t  37620  wl-sb8eut  37622  wl-sb8eutv  37623  ichnfimlem  47573  ichnfim  47574
  Copyright terms: Public domain W3C validator