MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2151
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2171. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1787 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2147 . . 3 𝑥𝑥𝜑
3 nfa1 2148 . . 3 𝑥𝑥𝜑
42, 3nfim 1899 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1855 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-10 2137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787
This theorem is referenced by:  sb4bOLD  2476  nfsb4t  2503  nfnfc1  2910  nfabdwOLD  2931  sbcnestgfw  4352  sbcnestgf  4357  bj-sbf4  35023  wl-equsal1t  35700  wl-sb6rft  35703  wl-sb8t  35707  wl-mo2tf  35726  wl-eutf  35728  wl-mo2t  35730  wl-mo3t  35731  wl-sb8eut  35732  ichnfimlem  44915  ichnfim  44916
  Copyright terms: Public domain W3C validator