MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2154
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2174. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1790 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2150 . . 3 𝑥𝑥𝜑
3 nfa1 2151 . . 3 𝑥𝑥𝜑
42, 3nfim 1902 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1858 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1785  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-10 2140
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  sb4bOLD  2477  nfsb4t  2504  nfnfc1  2911  nfabdwOLD  2932  sbcnestgfw  4357  sbcnestgf  4362  bj-sbf4  35002  wl-equsal1t  35679  wl-sb6rft  35682  wl-sb8t  35686  wl-mo2tf  35705  wl-eutf  35707  wl-mo2t  35709  wl-mo3t  35710  wl-sb8eut  35711  ichnfimlem  44867  ichnfim  44868
  Copyright terms: Public domain W3C validator