MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2153
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1788 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2149 . . 3 𝑥𝑥𝜑
3 nfa1 2150 . . 3 𝑥𝑥𝜑
42, 3nfim 1900 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1856 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-10 2139
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788
This theorem is referenced by:  sb4bOLD  2476  nfsb4t  2503  nfnfc1  2909  nfabdwOLD  2930  sbcnestgfw  4349  sbcnestgf  4354  bj-sbf4  34950  wl-equsal1t  35627  wl-sb6rft  35630  wl-sb8t  35634  wl-mo2tf  35653  wl-eutf  35655  wl-mo2t  35657  wl-mo3t  35658  wl-sb8eut  35659  ichnfimlem  44803  ichnfim  44804
  Copyright terms: Public domain W3C validator