MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2155
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2178. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1782 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2151 . . 3 𝑥𝑥𝜑
3 nfa1 2152 . . 3 𝑥𝑥𝜑
42, 3nfim 1895 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1851 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfsb4t  2507  nfnfc1  2911  nfabdwOLD  2933  sbcnestgfw  4444  sbcnestgf  4449  bj-sbf4  36806  wl-equsal1t  37496  wl-sbid2ft  37499  wl-sb8t  37506  wl-mo2tf  37525  wl-eutf  37527  wl-mo2t  37529  wl-mo3t  37530  wl-sb8eut  37532  wl-sb8eutv  37533  ichnfimlem  47337  ichnfim  47338
  Copyright terms: Public domain W3C validator