| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnf1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2177. (Revised by Wolf Lammen, 12-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | nfe1 2150 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 3 | nfa1 2151 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 4 | 2, 3 | nfim 1896 | . 2 ⊢ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑) |
| 5 | 1, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfsb4t 2504 nfnfc1 2908 sbcnestgfw 4421 sbcnestgf 4426 bj-sbf4 36841 wl-equsal1t 37543 wl-sbid2ft 37546 wl-sb8t 37553 wl-mo2tf 37572 wl-eutf 37574 wl-mo2t 37576 wl-mo3t 37577 wl-sb8eut 37579 wl-sb8eutv 37580 ichnfimlem 47450 ichnfim 47451 |
| Copyright terms: Public domain | W3C validator |