Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnf1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2171. (Revised by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1787 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfe1 2147 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
3 | nfa1 2148 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
4 | 2, 3 | nfim 1899 | . 2 ⊢ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑) |
5 | 1, 4 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: sb4bOLD 2476 nfsb4t 2503 nfnfc1 2910 nfabdwOLD 2931 sbcnestgfw 4352 sbcnestgf 4357 bj-sbf4 35023 wl-equsal1t 35700 wl-sb6rft 35703 wl-sb8t 35707 wl-mo2tf 35726 wl-eutf 35728 wl-mo2t 35730 wl-mo3t 35731 wl-sb8eut 35732 ichnfimlem 44915 ichnfim 44916 |
Copyright terms: Public domain | W3C validator |