MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnf1 Structured version   Visualization version   GIF version

Theorem nfnf1 2154
Description: The setvar 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2177. (Revised by Wolf Lammen, 12-Oct-2021.)
Assertion
Ref Expression
nfnf1 𝑥𝑥𝜑

Proof of Theorem nfnf1
StepHypRef Expression
1 df-nf 1784 . 2 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
2 nfe1 2150 . . 3 𝑥𝑥𝜑
3 nfa1 2151 . . 3 𝑥𝑥𝜑
42, 3nfim 1896 . 2 𝑥(∃𝑥𝜑 → ∀𝑥𝜑)
51, 4nfxfr 1853 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfsb4t  2504  nfnfc1  2908  sbcnestgfw  4421  sbcnestgf  4426  bj-sbf4  36841  wl-equsal1t  37543  wl-sbid2ft  37546  wl-sb8t  37553  wl-mo2tf  37572  wl-eutf  37574  wl-mo2t  37576  wl-mo3t  37577  wl-sb8eut  37579  wl-sb8eutv  37580  ichnfimlem  47450  ichnfim  47451
  Copyright terms: Public domain W3C validator