![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnf1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in Ⅎ𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) Remove dependency on ax-12 2178. (Revised by Wolf Lammen, 12-Oct-2021.) |
Ref | Expression |
---|---|
nfnf1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1782 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
2 | nfe1 2151 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
3 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
4 | 2, 3 | nfim 1895 | . 2 ⊢ Ⅎ𝑥(∃𝑥𝜑 → ∀𝑥𝜑) |
5 | 1, 4 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfsb4t 2507 nfnfc1 2911 nfabdwOLD 2933 sbcnestgfw 4444 sbcnestgf 4449 bj-sbf4 36806 wl-equsal1t 37496 wl-sbid2ft 37499 wl-sb8t 37506 wl-mo2tf 37525 wl-eutf 37527 wl-mo2t 37529 wl-mo3t 37530 wl-sb8eut 37532 wl-sb8eutv 37533 ichnfimlem 47337 ichnfim 47338 |
Copyright terms: Public domain | W3C validator |