Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2153 and hbs1 2266 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2148 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 |
This theorem is referenced by: hbs1 2266 sb5OLD 2269 sb8fOLD 2352 sb8ef 2353 sbbib 2359 sb2ae 2500 mo3 2564 eu1 2612 2mo 2650 2eu6 2658 nfsab1 2723 cbvralfwOLD 3369 cbvralf 3371 cbvralsvw 3402 cbvrexsvw 3403 cbvralsv 3404 cbvrexsv 3405 cbvrabw 3424 cbvrab 3425 sbhypf 3491 mob2 3650 reu2 3660 reu2eqd 3671 sbcralt 3805 sbcreu 3809 cbvrabcsfw 3876 cbvreucsf 3879 cbvrabcsf 3880 sbcel12 4342 sbceqg 4343 2nreu 4375 csbif 4516 rexreusng 4615 cbvopab1 5149 cbvopab1g 5150 cbvopab1s 5152 cbvmptf 5183 cbvmptfg 5184 csbopab 5468 csbopabgALT 5469 opeliunxp 5654 ralxpf 5755 cbviotaw 6398 cbviota 6401 csbiota 6426 isarep1 6522 f1ossf1o 7000 cbvriotaw 7241 cbvriota 7246 csbriota 7248 onminex 7652 tfis 7701 findes 7749 abrexex2g 7807 dfoprab4f 7896 axrepndlem1 10348 axrepndlem2 10349 uzind4s 12648 mo5f 30837 ac6sf2 30960 esumcvg 32054 bj-gabima 35128 wl-lem-moexsb 35723 wl-mo3t 35731 poimirlem26 35803 sbcalf 36272 sbcexf 36273 sbcrexgOLD 40607 scottabes 41860 2sb5nd 42180 2sb5ndALT 42552 2reu8i 44605 dfich2 44910 opeliun2xp 45668 |
Copyright terms: Public domain | W3C validator |