| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2157 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2086 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: hbs1 2274 sb8ef 2353 sbbib 2359 sb2ae 2494 mo3 2557 eu1 2603 2mo 2641 2eu6 2650 nfsab1 2715 cbvrexsvw 3281 cbvralsvwOLD 3282 cbvralsvwOLDOLD 3283 cbvrexsvwOLD 3284 cbvralf 3323 cbvralsv 3329 cbvrexsv 3330 cbvrabwOLD 3431 cbvrab 3435 sbhypfOLD 3500 mob2 3675 reu2 3685 reu2eqd 3696 sbcralt 3824 sbcreu 3828 cbvrabcsfw 3892 cbvreucsf 3895 cbvrabcsf 3896 sbcel12 4362 sbceqg 4363 2nreu 4395 csbif 4534 rexreusng 4631 cbvopab1 5166 cbvopab1g 5167 cbvopab1s 5169 cbvmptf 5192 cbvmptfg 5193 csbopab 5498 csbopabgALT 5499 opeliunxp 5686 opeliun2xp 5687 ralxpf 5789 cbviotaw 6445 cbviota 6447 csbiota 6475 isarep1 6571 f1ossf1o 7062 cbvriotaw 7315 cbvriota 7319 csbriota 7321 onminex 7738 tfis 7788 findes 7833 abrexex2g 7899 dfoprab4f 7991 axrepndlem1 10486 axrepndlem2 10487 uzind4s 12809 mo5f 32433 ac6sf2 32567 esumcvg 34059 bj-gabima 36924 wl-lem-moexsb 37552 wl-mo3t 37560 poimirlem26 37636 sbcalf 38104 sbcexf 38105 sbcrexgOLD 42768 scottabes 44225 2sb5nd 44544 2sb5ndALT 44915 2reu8i 47107 dfich2 47452 |
| Copyright terms: Public domain | W3C validator |