| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2157 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2086 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: hbs1 2274 sb8ef 2353 sbbib 2359 sb2ae 2494 mo3 2557 eu1 2603 2mo 2641 2eu6 2650 nfsab1 2715 cbvrexsvw 3288 cbvralsvwOLD 3289 cbvralsvwOLDOLD 3290 cbvrexsvwOLD 3291 cbvralf 3331 cbvralsv 3337 cbvrexsv 3338 cbvrabwOLD 3439 cbvrab 3443 sbhypfOLD 3508 mob2 3683 reu2 3693 reu2eqd 3704 sbcralt 3832 sbcreu 3836 cbvrabcsfw 3900 cbvreucsf 3903 cbvrabcsf 3904 sbcel12 4370 sbceqg 4371 2nreu 4403 csbif 4542 rexreusng 4639 cbvopab1 5176 cbvopab1g 5177 cbvopab1s 5179 cbvmptf 5202 cbvmptfg 5203 csbopab 5510 csbopabgALT 5511 opeliunxp 5698 opeliun2xp 5699 ralxpf 5800 cbviotaw 6459 cbviota 6461 csbiota 6492 isarep1 6589 f1ossf1o 7082 cbvriotaw 7335 cbvriota 7339 csbriota 7341 onminex 7758 tfis 7811 findes 7856 abrexex2g 7922 dfoprab4f 8014 axrepndlem1 10521 axrepndlem2 10522 uzind4s 12843 mo5f 32468 ac6sf2 32598 esumcvg 34069 bj-gabima 36921 wl-lem-moexsb 37549 wl-mo3t 37557 poimirlem26 37633 sbcalf 38101 sbcexf 38102 sbcrexgOLD 42766 scottabes 44224 2sb5nd 44543 2sb5ndALT 44914 2reu8i 47107 dfich2 47452 |
| Copyright terms: Public domain | W3C validator |