| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2157 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2086 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: hbs1 2274 sb8fOLD 2353 sb8ef 2354 sbbib 2360 sb2ae 2495 mo3 2558 eu1 2604 2mo 2642 2eu6 2651 nfsab1 2716 cbvrexsvw 3293 cbvralsvwOLD 3294 cbvralsvwOLDOLD 3295 cbvrexsvwOLD 3296 cbvralf 3336 cbvralsv 3342 cbvrexsv 3343 cbvrabwOLD 3445 cbvrab 3449 sbhypfOLD 3514 mob2 3688 reu2 3698 reu2eqd 3709 sbcralt 3837 sbcreu 3841 cbvrabcsfw 3905 cbvreucsf 3908 cbvrabcsf 3909 sbcel12 4376 sbceqg 4377 2nreu 4409 csbif 4548 rexreusng 4645 cbvopab1 5183 cbvopab1g 5184 cbvopab1s 5186 cbvmptf 5209 cbvmptfg 5210 csbopab 5517 csbopabgALT 5518 opeliunxp 5707 opeliun2xp 5708 ralxpf 5812 cbviotaw 6473 cbviota 6475 csbiota 6506 isarep1 6608 isarep1OLD 6609 f1ossf1o 7102 cbvriotaw 7355 cbvriota 7359 csbriota 7361 onminex 7780 tfis 7833 findes 7878 abrexex2g 7945 dfoprab4f 8037 axrepndlem1 10551 axrepndlem2 10552 uzind4s 12873 mo5f 32424 ac6sf2 32554 esumcvg 34082 bj-gabima 36923 wl-lem-moexsb 37551 wl-mo3t 37559 poimirlem26 37635 sbcalf 38103 sbcexf 38104 sbcrexgOLD 42766 scottabes 44224 2sb5nd 44543 2sb5ndALT 44914 2reu8i 47104 dfich2 47449 |
| Copyright terms: Public domain | W3C validator |