![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2151 and hbs1 2263 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2086 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2146 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1783 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ex 1780 df-nf 1784 df-sb 2066 |
This theorem is referenced by: hbs1 2263 sb5OLD 2266 sb8fOLD 2348 sb8ef 2349 sbbib 2355 sb2ae 2493 mo3 2556 eu1 2604 2mo 2642 2eu6 2650 nfsab1 2715 cbvralsvw 3312 cbvrexsvw 3313 cbvralsvwOLD 3314 cbvrexsvwOLD 3315 cbvralfwOLD 3318 cbvralf 3354 cbvralsv 3360 cbvrexsv 3361 cbvrabw 3465 cbvrab 3471 sbhypfOLD 3538 mob2 3712 reu2 3722 reu2eqd 3733 sbcralt 3867 sbcreu 3871 cbvrabcsfw 3938 cbvreucsf 3941 cbvrabcsf 3942 sbcel12 4409 sbceqg 4410 2nreu 4442 csbif 4586 rexreusng 4684 cbvopab1 5224 cbvopab1g 5225 cbvopab1s 5227 cbvmptf 5258 cbvmptfg 5259 csbopab 5556 csbopabgALT 5557 opeliunxp 5744 ralxpf 5847 cbviotaw 6503 cbviota 6506 csbiota 6537 isarep1 6638 isarep1OLD 6639 f1ossf1o 7129 cbvriotaw 7378 cbvriota 7383 csbriota 7385 onminex 7794 tfis 7848 findes 7897 abrexex2g 7955 dfoprab4f 8046 axrepndlem1 10591 axrepndlem2 10592 uzind4s 12898 mo5f 31994 ac6sf2 32114 esumcvg 33380 bj-gabima 36125 wl-lem-moexsb 36738 wl-mo3t 36746 poimirlem26 36819 sbcalf 37287 sbcexf 37288 sbcrexgOLD 41827 scottabes 43305 2sb5nd 43625 2sb5ndALT 43997 2reu8i 46121 dfich2 46426 opeliun2xp 47098 |
Copyright terms: Public domain | W3C validator |