![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2146 and hbs1 2258 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2081 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2141 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1848 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 Ⅎwnf 1778 [wsb 2060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-10 2130 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 df-sb 2061 |
This theorem is referenced by: hbs1 2258 sb5OLD 2261 sb8fOLD 2345 sb8ef 2346 sbbib 2352 sb2ae 2490 mo3 2553 eu1 2601 2mo 2639 2eu6 2647 nfsab1 2712 cbvralsvw 3309 cbvrexsvw 3310 cbvralsvwOLD 3311 cbvrexsvwOLD 3312 cbvralfwOLD 3315 cbvralf 3351 cbvralsv 3357 cbvrexsv 3358 cbvrabw 3462 cbvrab 3468 sbhypfOLD 3535 mob2 3708 reu2 3718 reu2eqd 3729 sbcralt 3862 sbcreu 3866 cbvrabcsfw 3933 cbvreucsf 3936 cbvrabcsf 3937 sbcel12 4404 sbceqg 4405 2nreu 4437 csbif 4581 rexreusng 4679 cbvopab1 5217 cbvopab1g 5218 cbvopab1s 5220 cbvmptf 5251 cbvmptfg 5252 csbopab 5551 csbopabgALT 5552 opeliunxp 5739 ralxpf 5843 cbviotaw 6501 cbviota 6504 csbiota 6535 isarep1 6636 isarep1OLD 6637 f1ossf1o 7131 cbvriotaw 7379 cbvriota 7384 csbriota 7386 onminex 7799 tfis 7853 findes 7902 abrexex2g 7962 dfoprab4f 8054 axrepndlem1 10607 axrepndlem2 10608 uzind4s 12914 mo5f 32273 ac6sf2 32393 esumcvg 33641 bj-gabima 36354 wl-lem-moexsb 36970 wl-mo3t 36978 poimirlem26 37054 sbcalf 37522 sbcexf 37523 sbcrexgOLD 42127 scottabes 43602 2sb5nd 43922 2sb5ndALT 44294 2reu8i 46416 dfich2 46721 opeliun2xp 47319 |
Copyright terms: Public domain | W3C validator |