| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2159 and hbs1 2276 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2088 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2154 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: hbs1 2276 sb8ef 2355 sbbib 2361 sb2ae 2496 mo3 2559 eu1 2605 2mo 2643 2eu6 2652 nfsab1 2717 cbvrexsvw 3284 cbvralsvwOLD 3285 cbvralsvwOLDOLD 3286 cbvrexsvwOLD 3287 cbvralf 3326 cbvralsv 3332 cbvrexsv 3333 cbvrabwOLD 3431 cbvrab 3435 mob2 3669 reu2 3679 reu2eqd 3690 sbcralt 3818 sbcreu 3822 cbvrabcsfw 3886 cbvreucsf 3889 cbvrabcsf 3890 sbcel12 4358 sbceqg 4359 2nreu 4391 csbif 4530 rexreusng 4629 cbvopab1 5163 cbvopab1g 5164 cbvopab1s 5166 cbvmptf 5189 cbvmptfg 5190 csbopab 5493 csbopabgALT 5494 opeliunxp 5681 opeliun2xp 5682 ralxpf 5785 cbviotaw 6444 cbviota 6446 csbiota 6474 isarep1 6570 f1ossf1o 7061 cbvriotaw 7312 cbvriota 7316 csbriota 7318 onminex 7735 tfis 7785 findes 7830 abrexex2g 7896 dfoprab4f 7988 axrepndlem1 10483 axrepndlem2 10484 uzind4s 12806 mo5f 32468 ac6sf2 32605 esumcvg 34099 bj-gabima 36984 wl-lem-moexsb 37612 wl-mo3t 37620 poimirlem26 37696 sbcalf 38164 sbcexf 38165 sbcrexgOLD 42888 scottabes 44345 2sb5nd 44663 2sb5ndALT 45034 2reu8i 47223 dfich2 47568 |
| Copyright terms: Public domain | W3C validator |