![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2145 and hbs1 2260 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2080 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2140 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1847 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 Ⅎwnf 1777 [wsb 2059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ex 1774 df-nf 1778 df-sb 2060 |
This theorem is referenced by: hbs1 2260 sb5OLD 2263 sb8fOLD 2344 sb8ef 2345 sbbib 2351 sb2ae 2489 mo3 2552 eu1 2598 2mo 2636 2eu6 2645 nfsab1 2710 cbvralsvw 3305 cbvrexsvw 3306 cbvralsvwOLD 3307 cbvrexsvwOLD 3308 cbvralf 3344 cbvralsv 3350 cbvrexsv 3351 cbvrabw 3456 cbvrab 3462 sbhypfOLD 3530 mob2 3708 reu2 3718 reu2eqd 3729 sbcralt 3863 sbcreu 3867 cbvrabcsfw 3934 cbvreucsf 3937 cbvrabcsf 3938 sbcel12 4409 sbceqg 4410 2nreu 4442 csbif 4586 rexreusng 4684 cbvopab1 5223 cbvopab1g 5224 cbvopab1s 5226 cbvmptf 5257 cbvmptfg 5258 csbopab 5556 csbopabgALT 5557 opeliunxp 5744 ralxpf 5848 cbviotaw 6506 cbviota 6509 csbiota 6540 isarep1 6641 isarep1OLD 6642 f1ossf1o 7135 cbvriotaw 7382 cbvriota 7387 csbriota 7389 onminex 7804 tfis 7858 findes 7906 abrexex2g 7967 dfoprab4f 8059 axrepndlem1 10615 axrepndlem2 10616 uzind4s 12922 mo5f 32344 ac6sf2 32467 esumcvg 33775 bj-gabima 36488 wl-lem-moexsb 37105 wl-mo3t 37113 poimirlem26 37189 sbcalf 37657 sbcexf 37658 sbcrexgOLD 42270 scottabes 43744 2sb5nd 44064 2sb5ndALT 44436 2reu8i 46556 dfich2 46861 opeliun2xp 47508 |
Copyright terms: Public domain | W3C validator |