Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2155 and hbs1 2269 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: hbs1 2269 sb5OLD 2272 sb8v 2352 sb8ev 2353 sbbib 2359 sb2ae 2500 mo3 2564 eu1 2612 2mo 2650 2eu6 2658 nfsab1 2723 cbvralfwOLD 3359 cbvralf 3361 cbvralsvw 3391 cbvrexsvw 3392 cbvralsv 3393 cbvrexsv 3394 cbvrabw 3414 cbvrab 3415 sbhypf 3481 mob2 3645 reu2 3655 reu2eqd 3666 sbcralt 3801 sbcreu 3805 cbvrabcsfw 3872 cbvreucsf 3875 cbvrabcsf 3876 sbcel12 4339 sbceqg 4340 2nreu 4372 csbif 4513 rexreusng 4612 cbvopab1 5145 cbvopab1g 5146 cbvopab1s 5148 cbvmptf 5179 cbvmptfg 5180 csbopab 5461 csbopabgALT 5462 opeliunxp 5645 ralxpf 5744 cbviotaw 6383 cbviota 6386 csbiota 6411 isarep1 6506 f1ossf1o 6982 cbvriotaw 7221 cbvriota 7226 csbriota 7228 onminex 7629 tfis 7676 findes 7723 abrexex2g 7780 dfoprab4f 7869 axrepndlem1 10279 axrepndlem2 10280 uzind4s 12577 mo5f 30738 ac6sf2 30861 esumcvg 31954 bj-gabima 35055 wl-lem-moexsb 35650 wl-mo3t 35658 poimirlem26 35730 sbcalf 36199 sbcexf 36200 sbcrexgOLD 40523 scottabes 41749 2sb5nd 42069 2sb5ndALT 42441 2reu8i 44492 dfich2 44798 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |