| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2157 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2086 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2152 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: hbs1 2274 sb8fOLD 2353 sb8ef 2354 sbbib 2360 sb2ae 2495 mo3 2558 eu1 2604 2mo 2642 2eu6 2651 nfsab1 2716 cbvrexsvw 3294 cbvralsvwOLD 3295 cbvralsvwOLDOLD 3296 cbvrexsvwOLD 3297 cbvralf 3337 cbvralsv 3343 cbvrexsv 3344 cbvrabwOLD 3449 cbvrab 3454 sbhypfOLD 3520 mob2 3694 reu2 3704 reu2eqd 3715 sbcralt 3843 sbcreu 3847 cbvrabcsfw 3911 cbvreucsf 3914 cbvrabcsf 3915 sbcel12 4382 sbceqg 4383 2nreu 4415 csbif 4554 rexreusng 4651 cbvopab1 5189 cbvopab1g 5190 cbvopab1s 5192 cbvmptf 5215 cbvmptfg 5216 csbopab 5523 csbopabgALT 5524 opeliunxp 5713 opeliun2xp 5714 ralxpf 5818 cbviotaw 6479 cbviota 6481 csbiota 6512 isarep1 6614 isarep1OLD 6615 f1ossf1o 7107 cbvriotaw 7360 cbvriota 7364 csbriota 7366 onminex 7785 tfis 7839 findes 7885 abrexex2g 7952 dfoprab4f 8044 axrepndlem1 10563 axrepndlem2 10564 uzind4s 12881 mo5f 32425 ac6sf2 32556 esumcvg 34084 bj-gabima 36925 wl-lem-moexsb 37553 wl-mo3t 37561 poimirlem26 37637 sbcalf 38105 sbcexf 38106 sbcrexgOLD 42745 scottabes 44203 2sb5nd 44522 2sb5ndALT 44893 2reu8i 47084 dfich2 47414 |
| Copyright terms: Public domain | W3C validator |