![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2156 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1779 df-nf 1783 df-sb 2065 |
This theorem is referenced by: hbs1 2274 sb8fOLD 2357 sb8ef 2358 sbbib 2364 sb2ae 2501 mo3 2564 eu1 2610 2mo 2648 2eu6 2657 nfsab1 2722 cbvrexsvw 3318 cbvralsvwOLD 3319 cbvralsvwOLDOLD 3320 cbvrexsvwOLD 3321 cbvralf 3360 cbvralsv 3366 cbvrexsv 3367 cbvrabwOLD 3475 cbvrab 3480 sbhypfOLD 3548 mob2 3727 reu2 3737 reu2eqd 3748 sbcralt 3884 sbcreu 3888 cbvrabcsfw 3955 cbvreucsf 3958 cbvrabcsf 3959 sbcel12 4420 sbceqg 4421 2nreu 4453 csbif 4591 rexreusng 4687 cbvopab1 5226 cbvopab1g 5227 cbvopab1s 5229 cbvmptf 5260 cbvmptfg 5261 csbopab 5569 csbopabgALT 5570 opeliunxp 5760 ralxpf 5864 cbviotaw 6529 cbviota 6531 csbiota 6562 isarep1 6664 isarep1OLD 6665 f1ossf1o 7155 cbvriotaw 7404 cbvriota 7408 csbriota 7410 onminex 7829 tfis 7883 findes 7930 abrexex2g 7997 dfoprab4f 8089 axrepndlem1 10639 axrepndlem2 10640 uzind4s 12957 mo5f 32532 ac6sf2 32656 esumcvg 34081 bj-gabima 36935 wl-lem-moexsb 37563 wl-mo3t 37571 poimirlem26 37647 sbcalf 38115 sbcexf 38116 sbcrexgOLD 42789 scottabes 44254 2sb5nd 44573 2sb5ndALT 44945 2reu8i 47091 dfich2 47411 opeliun2xp 48216 |
Copyright terms: Public domain | W3C validator |