![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2154 and hbs1 2266 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2089 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2149 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1786 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 |
This theorem is referenced by: hbs1 2266 sb5OLD 2269 sb8fOLD 2351 sb8ef 2352 sbbib 2358 sb2ae 2496 mo3 2559 eu1 2607 2mo 2645 2eu6 2653 nfsab1 2718 cbvralsvw 3315 cbvrexsvw 3316 cbvralsvwOLD 3317 cbvrexsvwOLD 3318 cbvralfwOLD 3321 cbvralf 3357 cbvralsv 3363 cbvrexsv 3364 cbvrabw 3468 cbvrab 3474 sbhypfOLD 3540 mob2 3712 reu2 3722 reu2eqd 3733 sbcralt 3867 sbcreu 3871 cbvrabcsfw 3938 cbvreucsf 3941 cbvrabcsf 3942 sbcel12 4409 sbceqg 4410 2nreu 4442 csbif 4586 rexreusng 4684 cbvopab1 5224 cbvopab1g 5225 cbvopab1s 5227 cbvmptf 5258 cbvmptfg 5259 csbopab 5556 csbopabgALT 5557 opeliunxp 5744 ralxpf 5847 cbviotaw 6503 cbviota 6506 csbiota 6537 isarep1 6638 isarep1OLD 6639 f1ossf1o 7126 cbvriotaw 7374 cbvriota 7379 csbriota 7381 onminex 7790 tfis 7844 findes 7893 abrexex2g 7951 dfoprab4f 8042 axrepndlem1 10587 axrepndlem2 10588 uzind4s 12892 mo5f 31729 ac6sf2 31849 esumcvg 33084 bj-gabima 35820 wl-lem-moexsb 36433 wl-mo3t 36441 poimirlem26 36514 sbcalf 36982 sbcexf 36983 sbcrexgOLD 41523 scottabes 43001 2sb5nd 43321 2sb5ndALT 43693 2reu8i 45821 dfich2 46126 opeliun2xp 47008 |
Copyright terms: Public domain | W3C validator |