![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2152 and hbs1 2269 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2085 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2147 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2136 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: hbs1 2269 sb5OLD 2272 sb8fOLD 2353 sb8ef 2354 sbbib 2360 sb2ae 2498 mo3 2561 eu1 2607 2mo 2645 2eu6 2654 nfsab1 2719 cbvrexsvw 3319 cbvralsvwOLD 3320 cbvralsvwOLDOLD 3321 cbvrexsvwOLD 3322 cbvralf 3363 cbvralsv 3369 cbvrexsv 3370 cbvrabwOLD 3476 cbvrab 3481 sbhypfOLD 3552 mob2 3731 reu2 3741 reu2eqd 3752 sbcralt 3888 sbcreu 3892 cbvrabcsfw 3959 cbvreucsf 3962 cbvrabcsf 3963 sbcel12 4430 sbceqg 4431 2nreu 4463 csbif 4605 rexreusng 4703 cbvopab1 5244 cbvopab1g 5245 cbvopab1s 5247 cbvmptf 5278 cbvmptfg 5279 csbopab 5578 csbopabgALT 5579 opeliunxp 5766 ralxpf 5870 cbviotaw 6531 cbviota 6534 csbiota 6565 isarep1 6666 isarep1OLD 6667 f1ossf1o 7160 cbvriotaw 7410 cbvriota 7415 csbriota 7417 onminex 7834 tfis 7888 findes 7936 abrexex2g 8001 dfoprab4f 8093 axrepndlem1 10657 axrepndlem2 10658 uzind4s 12969 mo5f 32508 ac6sf2 32635 esumcvg 34042 bj-gabima 36854 wl-lem-moexsb 37470 wl-mo3t 37478 poimirlem26 37554 sbcalf 38022 sbcexf 38023 sbcrexgOLD 42678 scottabes 44151 2sb5nd 44471 2sb5ndALT 44843 2reu8i 46960 dfich2 47264 opeliun2xp 47975 |
Copyright terms: Public domain | W3C validator |