Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2161 and hbs1 2274 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
Ref | Expression |
---|---|
nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 2095 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | nfa1 2156 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
3 | 1, 2 | nfxfr 1859 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1790 [wsb 2074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-10 2145 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-ex 1787 df-nf 1791 df-sb 2075 |
This theorem is referenced by: hbs1 2274 sb5OLD 2277 sb8v 2356 sb8ev 2357 sbbib 2363 sb2ae 2501 mo3 2565 eu1 2614 2mo 2652 2eu6 2660 nfsab1 2726 cbvralfwOLD 3337 cbvralf 3339 cbvralsvw 3369 cbvrexsvw 3370 cbvralsv 3371 cbvrexsv 3372 cbvrabw 3392 cbvrab 3393 sbhypf 3459 mob2 3619 reu2 3629 reu2eqd 3640 sbcralt 3773 sbcreu 3777 cbvrabcsfw 3841 cbvreucsf 3844 cbvrabcsf 3845 sbcel12 4308 sbceqg 4309 2nreu 4341 csbif 4481 rexreusng 4580 cbvopab1 5113 cbvopab1g 5114 cbvopab1s 5116 cbvmptf 5139 cbvmptfg 5140 csbopab 5420 csbopabgALT 5421 opeliunxp 5600 ralxpf 5699 cbviotaw 6314 cbviota 6317 csbiota 6342 isarep1 6437 f1ossf1o 6912 cbvriotaw 7148 cbvriota 7153 csbriota 7155 onminex 7553 tfis 7600 findes 7645 abrexex2g 7702 dfoprab4f 7791 axrepndlem1 10104 axrepndlem2 10105 uzind4s 12402 mo5f 30423 ac6sf2 30546 esumcvg 31636 bj-gabima 34783 wl-lem-moexsb 35378 wl-mo3t 35386 poimirlem26 35458 sbcalf 35927 sbcexf 35928 sbcrexgOLD 40219 scottabes 41442 2sb5nd 41758 2sb5ndALT 42130 2reu8i 44185 dfich2 44491 opeliun2xp 45249 |
Copyright terms: Public domain | W3C validator |