| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfs1v | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in [𝑦 / 𝑥]𝜑 when 𝑥 and 𝑦 are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.) Shorten nfs1v 2155 and hbs1 2273 combined. (Revised by Wolf Lammen, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| nfs1v | ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 2084 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 2 | nfa1 2150 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → 𝜑) | |
| 3 | 1, 2 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: hbs1 2273 sb8fOLD 2355 sb8ef 2356 sbbib 2362 sb2ae 2499 mo3 2562 eu1 2608 2mo 2646 2eu6 2655 nfsab1 2720 cbvrexsvw 3301 cbvralsvwOLD 3302 cbvralsvwOLDOLD 3303 cbvrexsvwOLD 3304 cbvralf 3343 cbvralsv 3349 cbvrexsv 3350 cbvrabwOLD 3457 cbvrab 3462 sbhypfOLD 3528 mob2 3703 reu2 3713 reu2eqd 3724 sbcralt 3852 sbcreu 3856 cbvrabcsfw 3920 cbvreucsf 3923 cbvrabcsf 3924 sbcel12 4391 sbceqg 4392 2nreu 4424 csbif 4563 rexreusng 4659 cbvopab1 5197 cbvopab1g 5198 cbvopab1s 5200 cbvmptf 5231 cbvmptfg 5232 csbopab 5540 csbopabgALT 5541 opeliunxp 5732 opeliun2xp 5733 ralxpf 5837 cbviotaw 6500 cbviota 6502 csbiota 6533 isarep1 6635 isarep1OLD 6636 f1ossf1o 7127 cbvriotaw 7378 cbvriota 7382 csbriota 7384 onminex 7803 tfis 7857 findes 7903 abrexex2g 7970 dfoprab4f 8062 axrepndlem1 10613 axrepndlem2 10614 uzind4s 12931 mo5f 32435 ac6sf2 32561 esumcvg 34021 bj-gabima 36875 wl-lem-moexsb 37503 wl-mo3t 37511 poimirlem26 37587 sbcalf 38055 sbcexf 38056 sbcrexgOLD 42734 scottabes 44194 2sb5nd 44513 2sb5ndALT 44885 2reu8i 47059 dfich2 47379 |
| Copyright terms: Public domain | W3C validator |