![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hbe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. Corresponds to the axiom (5) of modal logic (see also modal5 2144). (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1774 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | hbn1 2130 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | |
3 | 1, 2 | hbxfrbi 1819 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1531 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-10 2129 |
This theorem depends on definitions: df-bi 206 df-ex 1774 |
This theorem is referenced by: nfe1 2139 equs5eALT 2356 nfeqf2 2368 equs5e 2449 axie1 2689 bj-wnf2 36087 bj-nnfe1 36129 ac6s6 37534 exlimexi 43799 vk15.4j 43803 vk15.4jVD 44189 |
Copyright terms: Public domain | W3C validator |