| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbe1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥𝜑. Corresponds to the axiom (5) of modal logic (see also modal5 2156). (Contributed by NM, 24-Jan-1993.) |
| Ref | Expression |
|---|---|
| hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
| 2 | hbn1 2143 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | |
| 3 | 1, 2 | hbxfrbi 1825 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nfe1 2151 equs5eALT 2370 nfeqf2 2382 equs5e 2463 axie1 2702 bj-wnf2 36741 bj-nnfe1 36783 ac6s6 38201 exlimexi 44516 vk15.4j 44520 vk15.4jVD 44905 |
| Copyright terms: Public domain | W3C validator |