Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbe1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥𝜑. Corresponds to the axiom (5) of modal logic (see also modal5 2152). (Contributed by NM, 24-Jan-1993.) |
Ref | Expression |
---|---|
hbe1 | ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
2 | hbn1 2138 | . 2 ⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | |
3 | 1, 2 | hbxfrbi 1827 | 1 ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: nfe1 2147 equs5eALT 2365 nfeqf2 2377 equs5e 2458 axie1 2703 bj-wnf2 34900 bj-nnfe1 34942 ac6s6 36330 exlimexi 42144 vk15.4j 42148 vk15.4jVD 42534 |
Copyright terms: Public domain | W3C validator |