MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbe1 Structured version   Visualization version   GIF version

Theorem hbe1 2141
Description: The setvar 𝑥 is not free in 𝑥𝜑. Corresponds to the axiom (5) of modal logic (see also modal5 2153). (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 df-ex 1777 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
2 hbn1 2140 . 2 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
31, 2hbxfrbi 1822 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-10 2139
This theorem depends on definitions:  df-bi 207  df-ex 1777
This theorem is referenced by:  nfe1  2148  equs5eALT  2368  nfeqf2  2380  equs5e  2461  axie1  2700  bj-wnf2  36701  bj-nnfe1  36743  ac6s6  38159  exlimexi  44522  vk15.4j  44526  vk15.4jVD  44912
  Copyright terms: Public domain W3C validator