MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbe1 Structured version   Visualization version   GIF version

Theorem hbe1 2143
Description: The setvar 𝑥 is not free in 𝑥𝜑. Corresponds to the axiom (5) of modal logic (see also modal5 2156). (Contributed by NM, 24-Jan-1993.)
Assertion
Ref Expression
hbe1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hbe1
StepHypRef Expression
1 df-ex 1778 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
2 hbn1 2142 . 2 (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
31, 2hbxfrbi 1823 1 (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-10 2141
This theorem depends on definitions:  df-bi 207  df-ex 1778
This theorem is referenced by:  nfe1  2151  equs5eALT  2373  nfeqf2  2385  equs5e  2466  axie1  2705  bj-wnf2  36684  bj-nnfe1  36726  ac6s6  38132  exlimexi  44495  vk15.4j  44499  vk15.4jVD  44885
  Copyright terms: Public domain W3C validator