MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1 Structured version   Visualization version   GIF version

Theorem hbn1 2143
Description: Alias for ax-10 2142 to be used instead of it. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
Assertion
Ref Expression
hbn1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem hbn1
StepHypRef Expression
1 ax-10 2142 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1538
This theorem was proved from axioms:  ax-10 2142
This theorem is referenced by:  hbe1  2144  hbe1a  2145  modal5  2156  axc7  2316  axc4  2320  axc14  2462  ax12indn  38943  axc5c4c711  44397  vk15.4j  44525  ax6e2nd  44555  ax6e2ndVD  44904  ax6e2ndALT  44926
  Copyright terms: Public domain W3C validator