MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1 Structured version   Visualization version   GIF version

Theorem hbn1 2140
Description: Alias for ax-10 2139 to be used instead of it. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
Assertion
Ref Expression
hbn1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem hbn1
StepHypRef Expression
1 ax-10 2139 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-10 2139
This theorem is referenced by:  hbe1  2141  hbe1a  2142  modal5  2154  axc7  2315  axc4  2319  axc14  2463  ax12indn  36884  axc5c4c711  41908  vk15.4j  42037  ax6e2nd  42067  ax6e2ndVD  42417  ax6e2ndALT  42439
  Copyright terms: Public domain W3C validator