MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbn1 Structured version   Visualization version   GIF version

Theorem hbn1 2138
Description: Alias for ax-10 2137 to be used instead of it. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
Assertion
Ref Expression
hbn1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Proof of Theorem hbn1
StepHypRef Expression
1 ax-10 2137 1 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-10 2137
This theorem is referenced by:  hbe1  2139  hbe1a  2140  modal5  2152  axc7  2311  axc4  2315  axc14  2463  ax12indn  36957  axc5c4c711  42019  vk15.4j  42148  ax6e2nd  42178  ax6e2ndVD  42528  ax6e2ndALT  42550
  Copyright terms: Public domain W3C validator