MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mp3an1i Structured version   Visualization version   GIF version

Theorem mp3an1i 1452
Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.)
Hypotheses
Ref Expression
mp3an1i.1 𝜓
mp3an1i.2 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
Assertion
Ref Expression
mp3an1i (𝜑 → ((𝜒𝜃) → 𝜏))

Proof of Theorem mp3an1i
StepHypRef Expression
1 mp3an1i.1 . . 3 𝜓
2 mp3an1i.2 . . . 4 (𝜑 → ((𝜓𝜒𝜃) → 𝜏))
32com12 32 . . 3 ((𝜓𝜒𝜃) → (𝜑𝜏))
41, 3mp3an1 1446 . 2 ((𝜒𝜃) → (𝜑𝜏))
54com12 32 1 (𝜑 → ((𝜒𝜃) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator