| Metamath
Proof Explorer Theorem List (p. 15 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | syl233anc 1401 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
| Theorem | syl323anc 1402 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
| Theorem | syl332anc 1403 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
| Theorem | syl333anc 1404 | A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (𝜑 → 𝜇) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌 ∧ 𝜇)) → 𝜆) ⇒ ⊢ (𝜑 → 𝜆) | ||
| Theorem | syl3an1b 1405 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3an2b 1406 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3an3b 1407 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜑 ↔ 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
| Theorem | syl3an1br 1408 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜓 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3an2br 1409 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3an3br 1410 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| ⊢ (𝜃 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
| Theorem | syld3an3 1411 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | ||
| Theorem | syld3an1 1412 | A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
| ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
| Theorem | syld3an2 1413 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
| ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
| Theorem | syl3anl1 1414 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
| Theorem | syl3anl2 1415 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
| ⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
| Theorem | syl3anl3 1416 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜑) ∧ 𝜏) → 𝜂) | ||
| Theorem | syl3anl 1417 | A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜏 → 𝜂) & ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) | ||
| Theorem | syl3anr1 1418 | A syllogism inference. (Contributed by NM, 31-Jul-2007.) |
| ⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | ||
| Theorem | syl3anr2 1419 | A syllogism inference. (Contributed by NM, 1-Aug-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
| ⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) | ||
| Theorem | syl3anr3 1420 | A syllogism inference. (Contributed by NM, 23-Aug-2007.) |
| ⊢ (𝜑 → 𝜏) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | ||
| Theorem | 3anidm12 1421 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| ⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | 3anidm13 1422 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | 3anidm23 1423 | Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
| ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
| Theorem | syl2an3an 1424 | syl3an 1161 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | ||
| Theorem | syl2an23an 1425 | Deduction related to syl3an 1161 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜃 ∧ 𝜑) → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜑) → 𝜂) | ||
| Theorem | 3ori 1426 | Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
| ⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) ⇒ ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | ||
| Theorem | 3jao 1427 | Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | ||
| Theorem | 3jaob 1428 | Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
| ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | ||
| Theorem | 3jaobOLD 1429 | Obsolete version of 3jaob 1428 as of 29-Jun-2025. (Contributed by NM, 13-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | ||
| Theorem | 3jaoi 1430 | Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜃 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) | ||
| Theorem | 3jaod 1431 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜒)) & ⊢ (𝜑 → (𝜏 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | ||
| Theorem | 3jaoian 1432 | Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ ((𝜏 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) | ||
| Theorem | 3jaodan 1433 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) | ||
| Theorem | mpjao3dan 1434 | Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) & ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | 3jaao 1435 | Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜒)) & ⊢ (𝜂 → (𝜁 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) | ||
| Theorem | syl3an9b 1436 | Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜒 ↔ 𝜏)) & ⊢ (𝜂 → (𝜏 ↔ 𝜁)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 ↔ 𝜁)) | ||
| Theorem | 3orbi123d 1437 | Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
| Theorem | 3anbi123d 1438 | Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
| Theorem | 3anbi12d 1439 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) | ||
| Theorem | 3anbi13d 1440 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) | ||
| Theorem | 3anbi23d 1441 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) | ||
| Theorem | 3anbi1d 1442 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
| Theorem | 3anbi2d 1443 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) | ||
| Theorem | 3anbi3d 1444 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) | ||
| Theorem | 3anim123d 1445 | Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
| Theorem | 3orim123d 1446 | Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
| Theorem | an6 1447 | Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) | ||
| Theorem | 3an6 1448 | Analogue of an4 656 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) | ||
| Theorem | 3or6 1449 | Analogue of or4 927 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) |
| ⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃) ∨ (𝜏 ∨ 𝜂)) ↔ ((𝜑 ∨ 𝜒 ∨ 𝜏) ∨ (𝜓 ∨ 𝜃 ∨ 𝜂))) | ||
| Theorem | mp3an1 1450 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| ⊢ 𝜑 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | mp3an2 1451 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
| Theorem | mp3an3 1452 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
| ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
| Theorem | mp3an12 1453 | An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
| Theorem | mp3an13 1454 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| ⊢ 𝜑 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | mp3an23 1455 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | mp3an1i 1456 | An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) |
| ⊢ 𝜓 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | ||
| Theorem | mp3anl1 1457 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| ⊢ 𝜑 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | mp3anl2 1458 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| ⊢ 𝜓 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | mp3anl3 1459 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| ⊢ 𝜒 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) | ||
| Theorem | mp3anr1 1460 | An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.) |
| ⊢ 𝜓 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | ||
| Theorem | mp3anr2 1461 | An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.) |
| ⊢ 𝜒 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → 𝜏) | ||
| Theorem | mp3anr3 1462 | An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) |
| ⊢ 𝜃 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | ||
| Theorem | mp3an 1463 | An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | mpd3an3 1464 | An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
| Theorem | mpd3an23 1465 | An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | mp3and 1466 | A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | mp3an12i 1467 | mp3an 1463 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | mp3an2i 1468 | mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | mp3an3an 1469 | mp3an 1463 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
| Theorem | mp3an2ani 1470 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
| Theorem | biimp3a 1471 | Infer implication from a logical equivalence. Similar to biimpa 476. (Contributed by NM, 4-Sep-2005.) |
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
| Theorem | biimp3ar 1472 | Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
| ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) | ||
| Theorem | 3anandis 1473 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
| Theorem | 3anandirs 1474 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) |
| ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
| Theorem | ecase23d 1475 | Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.) |
| ⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 3ecase 1476 | Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
| ⊢ (¬ 𝜑 → 𝜃) & ⊢ (¬ 𝜓 → 𝜃) & ⊢ (¬ 𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | 3bior1fd 1477 | A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf 937. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
| ⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
| Theorem | 3bior1fand 1478 | A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
| ⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ ((𝜃 ∧ 𝜏) ∨ 𝜒 ∨ 𝜓))) | ||
| Theorem | 3bior2fd 1479 | A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 937. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
| ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
| Theorem | 3biant1d 1480 | A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 531. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
| ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) | ||
| Theorem | intn3an1d 1481 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
| Theorem | intn3an2d 1482 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
| Theorem | intn3an3d 1483 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
| Theorem | an3andi 1484 | Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) | ||
| Theorem | an33rean 1485 | Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) ↔ ((𝜑 ∧ 𝜏 ∧ 𝜌) ∧ ((𝜓 ∧ 𝜃) ∧ (𝜂 ∧ 𝜎) ∧ (𝜒 ∧ 𝜁)))) | ||
| Theorem | 3orel2 1486 | Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Eric Schmidt, 8-Oct-2025.) |
| ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) | ||
| Theorem | 3orel2OLD 1487 | Obsolete version of 3orel2 1486 as of 8-Oct-2025. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) | ||
| Theorem | 3orel3 1488 | Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) |
| ⊢ (¬ 𝜒 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜓))) | ||
| Theorem | 3orel13 1489 | Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.) |
| ⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) | ||
| Theorem | 3pm3.2ni 1490 | Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011.) |
| ⊢ ¬ 𝜑 & ⊢ ¬ 𝜓 & ⊢ ¬ 𝜒 ⇒ ⊢ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒) | ||
| Syntax | wnan 1491 | Extend wff definition to include alternative denial ("nand"). |
| wff (𝜑 ⊼ 𝜓) | ||
| Definition | df-nan 1492 | Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1494 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1581), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1582), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1583), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1584). Contrast with ∧ (df-an 396), ∨ (df-or 849), → (wi 4), and ⊻ (df-xor 1512). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
| ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | ||
| Theorem | nanan 1493 | Conjunction in terms of alternative denial. (Contributed by Mario Carneiro, 9-May-2015.) |
| ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ⊼ 𝜓)) | ||
| Theorem | dfnan2 1494 | Alternative denial in terms of our primitive connectives (implication and negation). (Contributed by WL, 26-Jun-2020.) |
| ⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜑 → ¬ 𝜓)) | ||
| Theorem | nanor 1495 | Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.) |
| ⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | ||
| Theorem | nancom 1496 | Alternative denial is commutative. Remark: alternative denial is not associative, see nanass 1510. (Contributed by Mario Carneiro, 9-May-2015.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
| ⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜑)) | ||
| Theorem | nannan 1497 | Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
| ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) | ||
| Theorem | nanim 1498 | Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
| ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) | ||
| Theorem | nannot 1499 | Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) Use dfnan2 1494. (Revised by Wolf Lammen, 26-Jun-2020.) |
| ⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | ||
| Theorem | nanbi 1500 | Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
| ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |