![]() |
Metamath
Proof Explorer Theorem List (p. 15 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | syl332anc 1401 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl333anc 1402 | A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (𝜑 → 𝜇) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌 ∧ 𝜇)) → 𝜆) ⇒ ⊢ (𝜑 → 𝜆) | ||
Theorem | syl3an1b 1403 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2b 1404 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3b 1405 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syl3an1br 1406 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2br 1407 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3br 1408 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜃 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syld3an3 1409 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | ||
Theorem | syld3an1 1410 | A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | syld3an2 1411 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3anl1 1412 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜓) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl2 1413 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl3 1414 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜑) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl 1415 | A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜏 → 𝜂) & ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) | ||
Theorem | syl3anr1 1416 | A syllogism inference. (Contributed by NM, 31-Jul-2007.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr2 1417 | A syllogism inference. (Contributed by NM, 1-Aug-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr3 1418 | A syllogism inference. (Contributed by NM, 23-Aug-2007.) |
⊢ (𝜑 → 𝜏) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | ||
Theorem | 3anidm12 1419 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm13 1420 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm23 1421 | Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | syl2an3an 1422 | syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | ||
Theorem | syl2an23an 1423 | Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜃 ∧ 𝜑) → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜑) → 𝜂) | ||
Theorem | 3ori 1424 | Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) ⇒ ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | ||
Theorem | 3jao 1425 | Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | ||
Theorem | 3jaob 1426 | Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | ||
Theorem | 3jaobOLD 1427 | Obsolete version of 3jaob 1426 as of 29-Jun-2025. (Contributed by NM, 13-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | ||
Theorem | 3jaoi 1428 | Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜃 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) | ||
Theorem | 3jaod 1429 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜒)) & ⊢ (𝜑 → (𝜏 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | ||
Theorem | 3jaoian 1430 | Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ ((𝜏 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | 3jaodan 1431 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) | ||
Theorem | mpjao3dan 1432 | Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) & ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | 3jaao 1433 | Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜒)) & ⊢ (𝜂 → (𝜁 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) | ||
Theorem | syl3an9b 1434 | Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜒 ↔ 𝜏)) & ⊢ (𝜂 → (𝜏 ↔ 𝜁)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 ↔ 𝜁)) | ||
Theorem | 3orbi123d 1435 | Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
Theorem | 3anbi123d 1436 | Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
Theorem | 3anbi12d 1437 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) | ||
Theorem | 3anbi13d 1438 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) | ||
Theorem | 3anbi23d 1439 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) | ||
Theorem | 3anbi1d 1440 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
Theorem | 3anbi2d 1441 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) | ||
Theorem | 3anbi3d 1442 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) | ||
Theorem | 3anim123d 1443 | Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
Theorem | 3orim123d 1444 | Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
Theorem | an6 1445 | Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) | ||
Theorem | 3an6 1446 | Analogue of an4 655 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) | ||
Theorem | 3or6 1447 | Analogue of or4 925 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) |
⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃) ∨ (𝜏 ∨ 𝜂)) ↔ ((𝜑 ∨ 𝜒 ∨ 𝜏) ∨ (𝜓 ∨ 𝜃 ∨ 𝜂))) | ||
Theorem | mp3an1 1448 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜑 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | mp3an2 1449 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | mp3an3 1450 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mp3an12 1451 | An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | mp3an13 1452 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝜑 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | mp3an23 1453 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mp3an1i 1454 | An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) |
⊢ 𝜓 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | ||
Theorem | mp3anl1 1455 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜑 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anl2 1456 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜓 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anl3 1457 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜒 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anr1 1458 | An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | mp3anr2 1459 | An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.) |
⊢ 𝜒 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → 𝜏) | ||
Theorem | mp3anr3 1460 | An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) |
⊢ 𝜃 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | ||
Theorem | mp3an 1461 | An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | mpd3an3 1462 | An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mpd3an23 1463 | An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mp3and 1464 | A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | mp3an12i 1465 | mp3an 1461 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | mp3an2i 1466 | mp3an 1461 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | mp3an3an 1467 | mp3an 1461 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | mp3an2ani 1468 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | biimp3a 1469 | Infer implication from a logical equivalence. Similar to biimpa 476. (Contributed by NM, 4-Sep-2005.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | biimp3ar 1470 | Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) | ||
Theorem | 3anandis 1471 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | 3anandirs 1472 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) |
⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ecase23d 1473 | Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 3ecase 1474 | Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
⊢ (¬ 𝜑 → 𝜃) & ⊢ (¬ 𝜓 → 𝜃) & ⊢ (¬ 𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | 3bior1fd 1475 | A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf 935. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3bior1fand 1476 | A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ ((𝜃 ∧ 𝜏) ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3bior2fd 1477 | A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 935. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3biant1d 1478 | A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 531. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) | ||
Theorem | intn3an1d 1479 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | intn3an2d 1480 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | intn3an3d 1481 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
Theorem | an3andi 1482 | Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) | ||
Theorem | an33rean 1483 | Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) ↔ ((𝜑 ∧ 𝜏 ∧ 𝜌) ∧ ((𝜓 ∧ 𝜃) ∧ (𝜂 ∧ 𝜎) ∧ (𝜒 ∧ 𝜁)))) | ||
Theorem | 3orel2 1484 | Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) | ||
Theorem | 3orel3 1485 | Partial elimination of a triple disjunction by denial of a disjunct. (Contributed by Scott Fenton, 26-Mar-2011.) |
⊢ (¬ 𝜒 → ((𝜑 ∨ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜓))) | ||
Theorem | 3orel13 1486 | Elimination of two disjuncts in a triple disjunction. (Contributed by Scott Fenton, 9-Jun-2011.) |
⊢ ((¬ 𝜑 ∧ ¬ 𝜒) → ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜓)) | ||
Theorem | 3pm3.2ni 1487 | Triple negated disjunction introduction. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ ¬ 𝜑 & ⊢ ¬ 𝜓 & ⊢ ¬ 𝜒 ⇒ ⊢ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒) | ||
Syntax | wnan 1488 | Extend wff definition to include alternative denial ("nand"). |
wff (𝜑 ⊼ 𝜓) | ||
Definition | df-nan 1489 | Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1491 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1540) and the constant false ⊥ (df-fal 1550), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1578), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1579), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1580), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1581). Contrast with ∧ (df-an 396), ∨ (df-or 847), → (wi 4), and ⊻ (df-xor 1509). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | ||
Theorem | nanan 1490 | Conjunction in terms of alternative denial. (Contributed by Mario Carneiro, 9-May-2015.) |
⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ⊼ 𝜓)) | ||
Theorem | dfnan2 1491 | Alternative denial in terms of our primitive connectives (implication and negation). (Contributed by WL, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜑 → ¬ 𝜓)) | ||
Theorem | nanor 1492 | Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | ||
Theorem | nancom 1493 | Alternative denial is commutative. Remark: alternative denial is not associative, see nanass 1507. (Contributed by Mario Carneiro, 9-May-2015.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜑)) | ||
Theorem | nannan 1494 | Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) | ||
Theorem | nanim 1495 | Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) | ||
Theorem | nannot 1496 | Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) |
⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | ||
Theorem | nanbi 1497 | Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)))) | ||
Theorem | nanbi1 1498 | Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | ||
Theorem | nanbi2 1499 | Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by SF, 2-Jan-2018.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) | ||
Theorem | nanbi12 1500 | Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |