![]() |
Metamath
Proof Explorer Theorem List (p. 15 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | syl21anbrc 1401 | Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜏 ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | 3expOLD 1402 | Obsolete version of 3exp 1109 as of 21-Jun-2022. (Contributed by NM, 30-May-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
Theorem | 3expaOLD 1403 | Obsolete version of 3expa 1108 as of 21-Jun-2022. (Contributed by NM, 20-Aug-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | 3com12OLD 1404 | Obsolete version of 3com12 1114 as of 21-Jun-2022. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | 3com13OLD 1405 | Obsolete version of 3com13 1115 as of 21-Jun-2022. (Contributed by NM, 28-Jan-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) | ||
Theorem | 3imp21OLD 1406 | Obsolete version of 3imp21 1102 as of 22-Jun-2022. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | 3imp3i2an 1407 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ ((𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜂) | ||
Theorem | ex3 1408 | Apply ex 403 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) | ||
Theorem | 3imp1 1409 | Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3impd 1410 | Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) | ||
Theorem | 3imp2 1411 | Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | 3impdi 1412 | Importation inference (undistribute conjunction). (Contributed by NM, 14-Aug-1995.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | 3impdir 1413 | Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜓)) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) → 𝜃) | ||
Theorem | 3exp1 1414 | Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | 3expd 1415 | Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | 3exp2 1416 | Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | ||
Theorem | exp5o 1417 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ((𝜃 ∧ 𝜏) → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp516 1418 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | exp520 1419 | A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂))))) | ||
Theorem | 3impexp 1420 | Version of impexp 443 for a triple conjunction. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||
Theorem | 3an1rs 1421 | Swap conjuncts. (Contributed by NM, 16-Dec-2007.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒) → 𝜏) | ||
Theorem | 3anassrs 1422 | Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ad5ant245 1423 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant234 1424 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant235 1425 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 14-Apr-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜏 ∧ 𝜑) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant123 1426 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant123OLD 1427 | Obsolete version of ad5ant123 1426 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant124 1428 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant124OLD 1429 | Obsolete version of ad5ant124 1428 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant125 1430 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant125OLD 1431 | Obsolete version of ad5ant125 1430 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜏) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant134 1432 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant134OLD 1433 | Obsolete version of ad5ant134 1432 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜒) ∧ 𝜂) → 𝜃) | ||
Theorem | ad5ant135 1434 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant135OLD 1435 | Obsolete version of ad5ant135 1434 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜓) ∧ 𝜂) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant145 1436 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant145OLD 1437 | Obsolete version of ad5ant145 1436 as of 23-Jun-2022. (Contributed by Alan Sare, 17-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) ∧ 𝜒) → 𝜃) | ||
Theorem | ad5ant2345 1438 | Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((((𝜂 ∧ 𝜑) ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | syl3anc 1439 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl13anc 1440 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl31anc 1441 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl112anc 1442 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl121anc 1443 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl211anc 1444 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl23anc 1445 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl32anc 1446 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl122anc 1447 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl212anc 1448 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl221anc 1449 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl113anc 1450 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl131anc 1451 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl311anc 1452 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | syl33anc 1453 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl222anc 1454 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl123anc 1455 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl132anc 1456 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl213anc 1457 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl231anc 1458 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl312anc 1459 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁)) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl321anc 1460 | Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (𝜑 → 𝜎) | ||
Theorem | syl133anc 1461 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl313anc 1462 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl331anc 1463 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl223anc 1464 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl232anc 1465 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl322anc 1466 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎)) → 𝜌) ⇒ ⊢ (𝜑 → 𝜌) | ||
Theorem | syl233anc 1467 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl323anc 1468 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl332anc 1469 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌)) → 𝜇) ⇒ ⊢ (𝜑 → 𝜇) | ||
Theorem | syl333anc 1470 | A syllogism inference combined with contraction. (Contributed by NM, 10-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (𝜑 → 𝜁) & ⊢ (𝜑 → 𝜎) & ⊢ (𝜑 → 𝜌) & ⊢ (𝜑 → 𝜇) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ (𝜎 ∧ 𝜌 ∧ 𝜇)) → 𝜆) ⇒ ⊢ (𝜑 → 𝜆) | ||
Theorem | syl3an1b 1471 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2b 1472 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3b 1473 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syl3an1br 1474 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2br 1475 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3br 1476 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜃 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syld3an3 1477 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | ||
Theorem | syld3an1 1478 | A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | syld3an1OLD 1479 | Obsolete version of syld3an1 1478 as of 26-Jun-2022. (Contributed by NM, 7-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | syld3an2 1480 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syld3an2OLD 1481 | Obsolete version of syld3an2 1480 as of 26-Jun-2022. (Contributed by NM, 7-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3anl1 1482 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜓) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl2 1483 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl2OLD 1484 | Obsolete version of syl3anl2 1483 as of 27-Jun-2022. (Contributed by NM, 24-Feb-2005.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl3 1485 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜑) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl 1486 | A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜏 → 𝜂) & ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) | ||
Theorem | syl3anr1 1487 | A syllogism inference. (Contributed by NM, 31-Jul-2007.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr2 1488 | A syllogism inference. (Contributed by NM, 1-Aug-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr2OLD 1489 | Obsolete version of syl3anr2 1488 as of 27-Jun-2022. (Contributed by NM, 1-Aug-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr3 1490 | A syllogism inference. (Contributed by NM, 23-Aug-2007.) |
⊢ (𝜑 → 𝜏) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | ||
Theorem | 3anidm12 1491 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm13 1492 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm23 1493 | Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | syl2an3an 1494 | syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | ||
Theorem | syl2an23an 1495 | Deduction related to syl3an 1160 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜃 ∧ 𝜑) → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜑) → 𝜂) | ||
Theorem | syl2an23anOLD 1496 | Obsolete version of syl2an23an 1495 as of 28-Jun-2022. (Contributed by Alan Sare, 31-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜃 ∧ 𝜑) → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜑) → 𝜂) | ||
Theorem | 3ori 1497 | Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) ⇒ ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | ||
Theorem | 3jao 1498 | Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | ||
Theorem | 3jaoOLD 1499 | Obsolete version of 3jao 1498 as of 28-Jun-2022. (Contributed by NM, 8-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | ||
Theorem | 3jaob 1500 | Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011.) |
⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |