Home | Metamath
Proof Explorer Theorem List (p. 15 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | syl3an1b 1401 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2b 1402 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜒) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3b 1403 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜑 ↔ 𝜃) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syl3an1br 1404 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an2br 1405 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜒 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3an3br 1406 | A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
⊢ (𝜃 ↔ 𝜑) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜏) | ||
Theorem | syld3an3 1407 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) | ||
Theorem | syld3an1 1408 | A syllogism inference. (Contributed by NM, 7-Jul-2008.) (Proof shortened by Wolf Lammen, 26-Jun-2022.) |
⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜑) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | syld3an2 1409 | A syllogism inference. (Contributed by NM, 20-May-2007.) |
⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜓) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | syl3anl1 1410 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜓) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl2 1411 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜒) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜑 ∧ 𝜃) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl3 1412 | A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜑) ∧ 𝜏) → 𝜂) | ||
Theorem | syl3anl 1413 | A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜏 → 𝜂) & ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) | ||
Theorem | syl3anr1 1414 | A syllogism inference. (Contributed by NM, 31-Jul-2007.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜃 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr2 1415 | A syllogism inference. (Contributed by NM, 1-Aug-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2022.) |
⊢ (𝜑 → 𝜃) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜑 ∧ 𝜏)) → 𝜂) | ||
Theorem | syl3anr3 1416 | A syllogism inference. (Contributed by NM, 23-Aug-2007.) |
⊢ (𝜑 → 𝜏) & ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ ((𝜒 ∧ (𝜓 ∧ 𝜃 ∧ 𝜑)) → 𝜂) | ||
Theorem | 3anidm12 1417 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm13 1418 | Inference from idempotent law for conjunction. (Contributed by NM, 7-Mar-2008.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜑) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | 3anidm23 1419 | Inference from idempotent law for conjunction. (Contributed by NM, 1-Feb-2007.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | syl2an3an 1420 | syl3an 1158 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃) → 𝜂) | ||
Theorem | syl2an23an 1421 | Deduction related to syl3an 1158 with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Jun-2022.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜃 ∧ 𝜑) → 𝜏) & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜑) → 𝜂) | ||
Theorem | 3ori 1422 | Infer implication from triple disjunction. (Contributed by NM, 26-Sep-2006.) |
⊢ (𝜑 ∨ 𝜓 ∨ 𝜒) ⇒ ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒) | ||
Theorem | 3jao 1423 | Disjunction of three antecedents. (Contributed by NM, 8-Apr-1994.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓)) → ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓)) | ||
Theorem | 3jaob 1424 | Disjunction of three antecedents. (Contributed by NM, 13-Sep-2011.) |
⊢ (((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜓) ∧ (𝜃 → 𝜓))) | ||
Theorem | 3jaoi 1425 | Disjunction of three antecedents (inference). (Contributed by NM, 12-Sep-1995.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜃 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜃) → 𝜓) | ||
Theorem | 3jaod 1426 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜒)) & ⊢ (𝜑 → (𝜏 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) | ||
Theorem | 3jaoian 1427 | Disjunction of three antecedents (inference). (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ ((𝜏 ∧ 𝜓) → 𝜒) ⇒ ⊢ (((𝜑 ∨ 𝜃 ∨ 𝜏) ∧ 𝜓) → 𝜒) | ||
Theorem | 3jaodan 1428 | Disjunction of three antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) | ||
Theorem | mpjao3dan 1429 | Eliminate a three-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) (Proof shortened by Wolf Lammen, 20-Apr-2024.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) & ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | mpjao3danOLD 1430 | Obsolete version of mpjao3dan 1429 as of 17-Apr-2024. (Contributed by Thierry Arnoux, 13-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜒) & ⊢ ((𝜑 ∧ 𝜏) → 𝜒) & ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | 3jaao 1431 | Inference conjoining and disjoining the antecedents of three implications. (Contributed by Jeff Hankins, 15-Aug-2009.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜃 → (𝜏 → 𝜒)) & ⊢ (𝜂 → (𝜁 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → ((𝜓 ∨ 𝜏 ∨ 𝜁) → 𝜒)) | ||
Theorem | syl3an9b 1432 | Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 → (𝜒 ↔ 𝜏)) & ⊢ (𝜂 → (𝜏 ↔ 𝜁)) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜂) → (𝜓 ↔ 𝜁)) | ||
Theorem | 3orbi123d 1433 | Deduction joining 3 equivalences to form equivalence of disjunctions. (Contributed by NM, 20-Apr-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
Theorem | 3anbi123d 1434 | Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → (𝜂 ↔ 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
Theorem | 3anbi12d 1435 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ (𝜒 ∧ 𝜏 ∧ 𝜂))) | ||
Theorem | 3anbi13d 1436 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜂 ∧ 𝜃) ↔ (𝜒 ∧ 𝜂 ∧ 𝜏))) | ||
Theorem | 3anbi23d 1437 | Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜂 ∧ 𝜓 ∧ 𝜃) ↔ (𝜂 ∧ 𝜒 ∧ 𝜏))) | ||
Theorem | 3anbi1d 1438 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜏) ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
Theorem | 3anbi2d 1439 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜓 ∧ 𝜏) ↔ (𝜃 ∧ 𝜒 ∧ 𝜏))) | ||
Theorem | 3anbi3d 1440 | Deduction adding conjuncts to an equivalence. (Contributed by NM, 8-Sep-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ∧ 𝜏 ∧ 𝜓) ↔ (𝜃 ∧ 𝜏 ∧ 𝜒))) | ||
Theorem | 3anim123d 1441 | Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) | ||
Theorem | 3orim123d 1442 | Deduction joining 3 implications to form implication of disjunctions. (Contributed by NM, 4-Apr-1997.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜂 → 𝜁)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜂) → (𝜒 ∨ 𝜏 ∨ 𝜁))) | ||
Theorem | an6 1443 | Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) | ||
Theorem | 3an6 1444 | Analogue of an4 652 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) | ||
Theorem | 3or6 1445 | Analogue of or4 923 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) |
⊢ (((𝜑 ∨ 𝜓) ∨ (𝜒 ∨ 𝜃) ∨ (𝜏 ∨ 𝜂)) ↔ ((𝜑 ∨ 𝜒 ∨ 𝜏) ∨ (𝜓 ∨ 𝜃 ∨ 𝜂))) | ||
Theorem | mp3an1 1446 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜑 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | mp3an2 1447 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | ||
Theorem | mp3an3 1448 | An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mp3an12 1449 | An inference based on modus ponens. (Contributed by NM, 13-Jul-2005.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
Theorem | mp3an13 1450 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝜑 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | mp3an23 1451 | An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mp3an1i 1452 | An inference based on modus ponens. (Contributed by NM, 5-Jul-2005.) |
⊢ 𝜓 & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜏)) | ||
Theorem | mp3anl1 1453 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜑 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anl2 1454 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜓 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anl3 1455 | An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
⊢ 𝜒 & ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) | ||
Theorem | mp3anr1 1456 | An inference based on modus ponens. (Contributed by NM, 4-Nov-2006.) |
⊢ 𝜓 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | mp3anr2 1457 | An inference based on modus ponens. (Contributed by NM, 24-Nov-2006.) |
⊢ 𝜒 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → 𝜏) | ||
Theorem | mp3anr3 1458 | An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) |
⊢ 𝜃 & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) | ||
Theorem | mp3an 1459 | An inference based on modus ponens. (Contributed by NM, 14-May-1999.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | mpd3an3 1460 | An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mpd3an23 1461 | An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mp3and 1462 | A deduction based on modus ponens. (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | mp3an12i 1463 | mp3an 1459 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | mp3an2i 1464 | mp3an 1459 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | mp3an3an 1465 | mp3an 1459 with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | mp3an2ani 1466 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | biimp3a 1467 | Infer implication from a logical equivalence. Similar to biimpa 476. (Contributed by NM, 4-Sep-2005.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | ||
Theorem | biimp3ar 1468 | Infer implication from a logical equivalence. Similar to biimpar 477. (Contributed by NM, 2-Jan-2009.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜒) | ||
Theorem | 3anandis 1469 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
⊢ (((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃)) → 𝜏) ⇒ ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | ||
Theorem | 3anandirs 1470 | Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) |
⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜃) ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ecase23d 1471 | Deduction for elimination by cases. (Contributed by NM, 22-Apr-1994.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | 3ecase 1472 | Inference for elimination by cases. (Contributed by NM, 13-Jul-2005.) |
⊢ (¬ 𝜑 → 𝜃) & ⊢ (¬ 𝜓 → 𝜃) & ⊢ (¬ 𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | 3bior1fd 1473 | A disjunction is equivalent to a threefold disjunction with single falsehood, analogous to biorf 933. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3bior1fand 1474 | A disjunction is equivalent to a threefold disjunction with single falsehood of a conjunction. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∨ 𝜓) ↔ ((𝜃 ∧ 𝜏) ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3bior2fd 1475 | A wff is equivalent to its threefold disjunction with double falsehood, analogous to biorf 933. (Contributed by Alexander van der Vekens, 8-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜃 ∨ 𝜒 ∨ 𝜓))) | ||
Theorem | 3biant1d 1476 | A conjunction is equivalent to a threefold conjunction with single truth, analogous to biantrud 531. (Contributed by Alexander van der Vekens, 26-Sep-2017.) |
⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜃 ∧ 𝜒 ∧ 𝜓))) | ||
Theorem | intn3an1d 1477 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | intn3an2d 1478 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜓 ∧ 𝜃)) | ||
Theorem | intn3an3d 1479 | Introduction of a triple conjunct inside a contradiction. (Contributed by FL, 27-Dec-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ (𝜒 ∧ 𝜃 ∧ 𝜓)) | ||
Theorem | an3andi 1480 | Distribution of conjunction over threefold conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019.) |
⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜑 ∧ 𝜒) ∧ (𝜑 ∧ 𝜃))) | ||
Theorem | an33rean 1481 | Rearrange a 9-fold conjunction. (Contributed by Thierry Arnoux, 14-Apr-2019.) (Proof shortened by Wolf Lammen, 21-Apr-2024.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) ↔ ((𝜑 ∧ 𝜏 ∧ 𝜌) ∧ ((𝜓 ∧ 𝜃) ∧ (𝜂 ∧ 𝜎) ∧ (𝜒 ∧ 𝜁)))) | ||
Theorem | an33reanOLD 1482 | Obsolete version of an33rean 1481 as of 21-Apr-2024. (Contributed by Thierry Arnoux, 14-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) ↔ ((𝜑 ∧ 𝜏 ∧ 𝜌) ∧ ((𝜓 ∧ 𝜃) ∧ (𝜂 ∧ 𝜎) ∧ (𝜒 ∧ 𝜁)))) | ||
Syntax | wnan 1483 | Extend wff definition to include alternative denial ("nand"). |
wff (𝜑 ⊼ 𝜓) | ||
Definition | df-nan 1484 | Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1486 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1580), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1581), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1582), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1583). Contrast with ∧ (df-an 396), ∨ (df-or 844), → (wi 4), and ⊻ (df-xor 1504). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | ||
Theorem | nanan 1485 | Conjunction in terms of alternative denial. (Contributed by Mario Carneiro, 9-May-2015.) |
⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 ⊼ 𝜓)) | ||
Theorem | dfnan2 1486 | Alternative denial in terms of our primitive connectives (implication and negation). (Contributed by WL, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜑 → ¬ 𝜓)) | ||
Theorem | nanor 1487 | Alternative denial in terms of disjunction and negation. This explains the name "alternative denial". (Contributed by BJ, 19-Oct-2022.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | ||
Theorem | nancom 1488 | Alternative denial is commutative. Remark: alternative denial is not associative, see nanass 1502. (Contributed by Mario Carneiro, 9-May-2015.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ (𝜓 ⊼ 𝜑)) | ||
Theorem | nannan 1489 | Nested alternative denials. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 26-Jun-2020.) |
⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) | ||
Theorem | nanim 1490 | Implication in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) | ||
Theorem | nannot 1491 | Negation in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Revised by Wolf Lammen, 26-Jun-2020.) |
⊢ (¬ 𝜑 ↔ (𝜑 ⊼ 𝜑)) | ||
Theorem | nanbi 1492 | Biconditional in terms of alternative denial. (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ⊼ 𝜓) ⊼ ((𝜑 ⊼ 𝜑) ⊼ (𝜓 ⊼ 𝜓)))) | ||
Theorem | nanbi1 1493 | Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Jun-2020.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | ||
Theorem | nanbi2 1494 | Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by Anthony Hart, 1-Sep-2011.) (Proof shortened by SF, 2-Jan-2018.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓))) | ||
Theorem | nanbi12 1495 | Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) | ||
Theorem | nanbi1i 1496 | Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒)) | ||
Theorem | nanbi2i 1497 | Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ⊼ 𝜑) ↔ (𝜒 ⊼ 𝜓)) | ||
Theorem | nanbi12i 1498 | Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃)) | ||
Theorem | nanbi1d 1499 | Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ⊼ 𝜃) ↔ (𝜒 ⊼ 𝜃))) | ||
Theorem | nanbi2d 1500 | Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ⊼ 𝜓) ↔ (𝜃 ⊼ 𝜒))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |