| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3anl1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| mp3anl1.1 | ⊢ 𝜑 |
| mp3anl1.2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3anl1 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anl1.1 | . . 3 ⊢ 𝜑 | |
| 2 | mp3anl1.2 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 3 | 2 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 4 | 1, 3 | mp3an1 1450 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 5 | 4 | imp 406 | 1 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: mp3anr1 1460 domssl 9034 domssr 9035 rexdif1en 9194 dif1en 9196 facavg 14336 iddvds 16303 isprm7 16741 blometi 30812 mdslmd3i 32341 atcvat2i 32396 chirredlem3 32401 mdsymlem1 32412 |
| Copyright terms: Public domain | W3C validator |