Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nanbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
nanbi12i | ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | nanbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | nanbi12 1498 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ⊼ wnan 1486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-nan 1487 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |