|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nanbi12i | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| nanbii.1 | ⊢ (𝜑 ↔ 𝜓) | 
| nanbi12i.2 | ⊢ (𝜒 ↔ 𝜃) | 
| Ref | Expression | 
|---|---|
| nanbi12i | ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nanbii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | nanbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | nanbi12 1502 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊼ wnan 1490 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1491 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |