![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1491 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1540) and the constant false ⊥ (df-fal 1550), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1578), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1579), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1580), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1581). Contrast with ∧ (df-an 396), ∨ (df-or 847), → (wi 4), and ⊻ (df-xor 1509). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1488 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1490 dfnan2 1491 nanor 1492 nanbi 1497 xornan2 1517 trunanfal 1579 nic-mpALT 1670 nic-ax 1671 nic-axALT 1672 nfnan 1899 elnanel 9676 naim1 36355 naim2 36356 df3nandALT1 36365 imnand2 36368 waj-ax 36380 lukshef-ax2 36381 arg-ax 36382 nandsym1 36388 tsna1 38104 tsna2 38105 tsna3 38106 ifpdfnan 43448 ifpnannanb 43469 nanorxor 44274 undisjrab 44275 |
Copyright terms: Public domain | W3C validator |