Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1486 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1580), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1581), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1582), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1583). Contrast with ∧ (df-an 396), ∨ (df-or 844), → (wi 4), and ⊻ (df-xor 1504). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1483 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1485 dfnan2 1486 nanor 1487 nanbi 1492 xornan2 1513 trunanfal 1581 nic-mpALT 1676 nic-ax 1677 nic-axALT 1678 nfnan 1904 elnanel 9295 naim1 34505 naim2 34506 df3nandALT1 34515 imnand2 34518 waj-ax 34530 lukshef-ax2 34531 arg-ax 34532 nandsym1 34538 tsna1 36229 tsna2 36230 tsna3 36231 ifpdfnan 40991 ifpnannanb 41012 nanorxor 41812 undisjrab 41813 |
Copyright terms: Public domain | W3C validator |