![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1491 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1581), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1582), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1583), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1584). Contrast with ∧ (df-an 396), ∨ (df-or 845), → (wi 4), and ⊻ (df-xor 1509). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1488 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1490 dfnan2 1491 nanor 1492 nanbi 1497 xornan2 1518 trunanfal 1582 nic-mpALT 1673 nic-ax 1674 nic-axALT 1675 nfnan 1902 elnanel 9608 naim1 35737 naim2 35738 df3nandALT1 35747 imnand2 35750 waj-ax 35762 lukshef-ax2 35763 arg-ax 35764 nandsym1 35770 tsna1 37475 tsna2 37476 tsna3 37477 ifpdfnan 42699 ifpnannanb 42720 nanorxor 43526 undisjrab 43527 |
Copyright terms: Public domain | W3C validator |