Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1489 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1580), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1581), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1582), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1583). Contrast with ∧ (df-an 397), ∨ (df-or 845), → (wi 4), and ⊻ (df-xor 1507). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1486 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 396 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1488 dfnan2 1489 nanor 1490 nanbi 1495 xornan2 1516 trunanfal 1581 nic-mpALT 1675 nic-ax 1676 nic-axALT 1677 nfnan 1903 elnanel 9365 naim1 34578 naim2 34579 df3nandALT1 34588 imnand2 34591 waj-ax 34603 lukshef-ax2 34604 arg-ax 34605 nandsym1 34611 tsna1 36302 tsna2 36303 tsna3 36304 ifpdfnan 41093 ifpnannanb 41114 nanorxor 41923 undisjrab 41924 |
Copyright terms: Public domain | W3C validator |