![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1493 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1545) and the constant false ⊥ (df-fal 1555), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1583), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1584), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1585), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1586). Contrast with ∧ (df-an 398), ∨ (df-or 847), → (wi 4), and ⊻ (df-xor 1511). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1490 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 397 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1492 dfnan2 1493 nanor 1494 nanbi 1499 xornan2 1520 trunanfal 1584 nic-mpALT 1675 nic-ax 1676 nic-axALT 1677 nfnan 1904 elnanel 9602 naim1 35322 naim2 35323 df3nandALT1 35332 imnand2 35335 waj-ax 35347 lukshef-ax2 35348 arg-ax 35349 nandsym1 35355 tsna1 37060 tsna2 37061 tsna3 37062 ifpdfnan 42285 ifpnannanb 42306 nanorxor 43112 undisjrab 43113 |
Copyright terms: Public domain | W3C validator |