![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nan | Structured version Visualization version GIF version |
Description: Define incompatibility, or alternative denial ("not-and" or "nand"). See dfnan2 1490 for an alternative. This is also called the Sheffer stroke, represented by a vertical bar, but we use a different symbol to avoid ambiguity with other uses of the vertical bar. In the second edition of Principia Mathematica (1927), Russell and Whitehead used the Sheffer stroke and suggested it as a replacement for the "or" and "not" operations of the first edition. However, in practice, "or" and "not" are more widely used. After we define the constant true ⊤ (df-tru 1539) and the constant false ⊥ (df-fal 1549), we will be able to prove these truth table values: ((⊤ ⊼ ⊤) ↔ ⊥) (trunantru 1577), ((⊤ ⊼ ⊥) ↔ ⊤) (trunanfal 1578), ((⊥ ⊼ ⊤) ↔ ⊤) (falnantru 1579), and ((⊥ ⊼ ⊥) ↔ ⊤) (falnanfal 1580). Contrast with ∧ (df-an 396), ∨ (df-or 848), → (wi 4), and ⊻ (df-xor 1508). (Contributed by Jeff Hoffman, 19-Nov-2007.) |
Ref | Expression |
---|---|
df-nan | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wnan 1487 | . 2 wff (𝜑 ⊼ 𝜓) |
4 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
5 | 4 | wn 3 | . 2 wff ¬ (𝜑 ∧ 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: nanan 1489 dfnan2 1490 nanor 1491 nanbi 1496 xornan2 1516 trunanfal 1578 nic-mpALT 1668 nic-ax 1669 nic-axALT 1670 nfnan 1897 elnanel 9644 naim1 36371 naim2 36372 df3nandALT1 36381 imnand2 36384 waj-ax 36396 lukshef-ax2 36397 arg-ax 36398 nandsym1 36404 tsna1 38130 tsna2 38131 tsna3 38132 ifpdfnan 43475 ifpnannanb 43496 nanorxor 44300 undisjrab 44301 |
Copyright terms: Public domain | W3C validator |