| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanbi12 | Structured version Visualization version GIF version | ||
| Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
| Ref | Expression |
|---|---|
| nanbi12 | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nanbi1 1501 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | |
| 2 | nanbi2 1502 | . 2 ⊢ ((𝜒 ↔ 𝜃) → ((𝜓 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ⊼ wnan 1491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-nan 1492 |
| This theorem is referenced by: nanbi12i 1506 nanbi12d 1509 |
| Copyright terms: Public domain | W3C validator |