Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nanbi12 | Structured version Visualization version GIF version |
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nanbi12 | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbi1 1497 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜒))) | |
2 | nanbi2 1498 | . 2 ⊢ ((𝜒 ↔ 𝜃) → ((𝜓 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) | |
3 | 1, 2 | sylan9bb 513 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 ⊼ 𝜒) ↔ (𝜓 ⊼ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nanbi12i 1502 nanbi12d 1505 |
Copyright terms: Public domain | W3C validator |