MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi12 Structured version   Visualization version   GIF version

Theorem nanbi12 1499
Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
nanbi12 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) ↔ (𝜓𝜃)))

Proof of Theorem nanbi12
StepHypRef Expression
1 nanbi1 1497 . 2 ((𝜑𝜓) → ((𝜑𝜒) ↔ (𝜓𝜒)))
2 nanbi2 1498 . 2 ((𝜒𝜃) → ((𝜓𝜒) ↔ (𝜓𝜃)))
31, 2sylan9bb 513 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) ↔ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wnan 1487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-nan 1488
This theorem is referenced by:  nanbi12i  1502  nanbi12d  1505
  Copyright terms: Public domain W3C validator