|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > negel | Structured version Visualization version GIF version | ||
| Description: An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) | 
| Ref | Expression | 
|---|---|
| negel.1 | ⊢ (𝜓 → 𝜒) | 
| negel.2 | ⊢ (𝜑 → ¬ 𝜒) | 
| Ref | Expression | 
|---|---|
| negel | ⊢ ((𝜑 ∧ 𝜓) → ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negel.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | 
| 3 | negel.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) | 
| 5 | 2, 4 | pm2.21fal 1561 | 1 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |