Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > negel | Structured version Visualization version GIF version |
Description: An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
Ref | Expression |
---|---|
negel.1 | ⊢ (𝜓 → 𝜒) |
negel.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
negel | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negel.1 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | negel.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | 3 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) |
5 | 2, 4 | pm2.21fal 1561 | 1 ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |