|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > orel | Structured version Visualization version GIF version | ||
| Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) | 
| Ref | Expression | 
|---|---|
| orel.1 | ⊢ ((𝜓 ∧ 𝜂) → 𝜃) | 
| orel.2 | ⊢ ((𝜒 ∧ 𝜌) → 𝜃) | 
| orel.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | 
| Ref | Expression | 
|---|---|
| orel | ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜂) | |
| 2 | orel.1 | . . . 4 ⊢ ((𝜓 ∧ 𝜂) → 𝜃) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝜂 ∧ 𝜓) → 𝜃) | 
| 4 | 1, 3 | sylan 580 | . 2 ⊢ (((𝜑 ∧ (𝜂 ∧ 𝜌)) ∧ 𝜓) → 𝜃) | 
| 5 | simprr 772 | . . 3 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜌) | |
| 6 | orel.2 | . . . 4 ⊢ ((𝜒 ∧ 𝜌) → 𝜃) | |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝜌 ∧ 𝜒) → 𝜃) | 
| 8 | 5, 7 | sylan 580 | . 2 ⊢ (((𝜑 ∧ (𝜂 ∧ 𝜌)) ∧ 𝜒) → 𝜃) | 
| 9 | orel.3 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → (𝜓 ∨ 𝜒)) | 
| 11 | 4, 8, 10 | mpjaodan 960 | 1 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |