Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > orel | Structured version Visualization version GIF version |
Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
Ref | Expression |
---|---|
orel.1 | ⊢ ((𝜓 ∧ 𝜂) → 𝜃) |
orel.2 | ⊢ ((𝜒 ∧ 𝜌) → 𝜃) |
orel.3 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orel | ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . . 3 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜂) | |
2 | orel.1 | . . . 4 ⊢ ((𝜓 ∧ 𝜂) → 𝜃) | |
3 | 2 | ancoms 458 | . . 3 ⊢ ((𝜂 ∧ 𝜓) → 𝜃) |
4 | 1, 3 | sylan 579 | . 2 ⊢ (((𝜑 ∧ (𝜂 ∧ 𝜌)) ∧ 𝜓) → 𝜃) |
5 | simprr 769 | . . 3 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜌) | |
6 | orel.2 | . . . 4 ⊢ ((𝜒 ∧ 𝜌) → 𝜃) | |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝜌 ∧ 𝜒) → 𝜃) |
8 | 5, 7 | sylan 579 | . 2 ⊢ (((𝜑 ∧ (𝜂 ∧ 𝜌)) ∧ 𝜒) → 𝜃) |
9 | orel.3 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
10 | 9 | adantr 480 | . 2 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → (𝜓 ∨ 𝜒)) |
11 | 4, 8, 10 | mpjaodan 955 | 1 ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |