Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-bijust | Structured version Visualization version GIF version |
Description: Biconditional justification from Nicod's axiom. For nic-* definitions, the biconditional connective is not used. Instead, definitions are made based on this form. nic-bi1 1696 and nic-bi2 1697 are used to convert the definitions into usable theorems about one side of the implication. (Contributed by Jeff Hoffman, 18-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-bijust | ⊢ ((𝜏 ⊼ 𝜏) ⊼ ((𝜏 ⊼ 𝜏) ⊼ (𝜏 ⊼ 𝜏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-swap 1687 | 1 ⊢ ((𝜏 ⊼ 𝜏) ⊼ ((𝜏 ⊼ 𝜏) ⊼ (𝜏 ⊼ 𝜏))) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |