Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nic-swap | Structured version Visualization version GIF version |
Description: The connector ⊼ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nic-swap | ⊢ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nic-id 1686 | . 2 ⊢ (𝜑 ⊼ (𝜑 ⊼ 𝜑)) | |
2 | nic-ax 1681 | . 2 ⊢ ((𝜑 ⊼ (𝜑 ⊼ 𝜑)) ⊼ ((𝜏 ⊼ (𝜏 ⊼ 𝜏)) ⊼ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))))) | |
3 | 1, 2 | nic-mp 1679 | 1 ⊢ ((𝜃 ⊼ 𝜑) ⊼ ((𝜑 ⊼ 𝜃) ⊼ (𝜑 ⊼ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ⊼ wnan 1487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-nan 1488 |
This theorem is referenced by: nic-isw1 1688 nic-isw2 1689 nic-bijust 1695 nic-luk1 1699 |
Copyright terms: Public domain | W3C validator |