Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-peircecurry | Structured version Visualization version GIF version |
Description: Peirce's axiom peirce 201 implies Curry's axiom curryax 890 over minimal implicational calculus and the axiomatic definition of disjunction (actually, only the introduction axioms olc 864 and orc 863; the elimination axiom jao 957 is not needed). See bj-currypeirce 34664 for the converse. (Contributed by BJ, 15-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-peircecurry | ⊢ (𝜑 ∨ (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜑 → 𝜓))) | |
2 | olc 864 | . . 3 ⊢ ((𝜑 → 𝜓) → (𝜑 ∨ (𝜑 → 𝜓))) | |
3 | peirce 201 | . . . 4 ⊢ ((((𝜑 ∨ (𝜑 → 𝜓)) → 𝜑) → (𝜑 ∨ (𝜑 → 𝜓))) → (𝜑 ∨ (𝜑 → 𝜓))) | |
4 | peirce 201 | . . . . 5 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | |
5 | peirceroll 85 | . . . . 5 ⊢ ((((𝜑 → 𝜓) → 𝜑) → 𝜑) → (((𝜑 → 𝜓) → (𝜑 ∨ (𝜑 → 𝜓))) → (((𝜑 ∨ (𝜑 → 𝜓)) → 𝜑) → 𝜑))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (((𝜑 → 𝜓) → (𝜑 ∨ (𝜑 → 𝜓))) → (((𝜑 ∨ (𝜑 → 𝜓)) → 𝜑) → 𝜑)) |
7 | peirceroll 85 | . . . 4 ⊢ (((((𝜑 ∨ (𝜑 → 𝜓)) → 𝜑) → (𝜑 ∨ (𝜑 → 𝜓))) → (𝜑 ∨ (𝜑 → 𝜓))) → ((((𝜑 ∨ (𝜑 → 𝜓)) → 𝜑) → 𝜑) → ((𝜑 → (𝜑 ∨ (𝜑 → 𝜓))) → (𝜑 ∨ (𝜑 → 𝜓))))) | |
8 | 3, 6, 7 | mpsyl 68 | . . 3 ⊢ (((𝜑 → 𝜓) → (𝜑 ∨ (𝜑 → 𝜓))) → ((𝜑 → (𝜑 ∨ (𝜑 → 𝜓))) → (𝜑 ∨ (𝜑 → 𝜓)))) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ((𝜑 → (𝜑 ∨ (𝜑 → 𝜓))) → (𝜑 ∨ (𝜑 → 𝜓))) |
10 | 1, 9 | ax-mp 5 | 1 ⊢ (𝜑 ∨ (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |