Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-00id | Structured version Visualization version GIF version |
Description: 00id 10853 proven without ax-mulcom 10639 but using ax-1ne0 10644. (Though note that the current version of 00id 10853 can be changed to avoid ax-icn 10634, ax-addcl 10635, ax-mulcl 10637, ax-i2m1 10643, ax-cnre 10648. Most of this is by using 0cnALT3 39792 instead of 0cn 10671). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sn-00id | ⊢ (0 + 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10681 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | resubadd 39859 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 −ℝ 0) = 0 ↔ (0 + 0) = 0)) | |
3 | 1, 1, 1, 2 | mp3an 1458 | . . 3 ⊢ ((0 −ℝ 0) = 0 ↔ (0 + 0) = 0) |
4 | df-ne 2952 | . . . 4 ⊢ ((0 −ℝ 0) ≠ 0 ↔ ¬ (0 −ℝ 0) = 0) | |
5 | sn-00idlem2 39879 | . . . . 5 ⊢ ((0 −ℝ 0) ≠ 0 → (0 −ℝ 0) = 1) | |
6 | sn-00idlem3 39880 | . . . . 5 ⊢ ((0 −ℝ 0) = 1 → (0 + 0) = 0) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((0 −ℝ 0) ≠ 0 → (0 + 0) = 0) |
8 | 4, 7 | sylbir 238 | . . 3 ⊢ (¬ (0 −ℝ 0) = 0 → (0 + 0) = 0) |
9 | 3, 8 | sylnbir 334 | . 2 ⊢ (¬ (0 + 0) = 0 → (0 + 0) = 0) |
10 | 9 | pm2.18i 131 | 1 ⊢ (0 + 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 (class class class)co 7150 ℝcr 10574 0cc0 10575 1c1 10576 + caddc 10578 −ℝ cresub 39845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-resub 39846 |
This theorem is referenced by: re0m0e0 39882 sn-addid1 39899 sn-mul01 39904 sn-mul02 39919 |
Copyright terms: Public domain | W3C validator |