Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-00id Structured version   Visualization version   GIF version

Theorem sn-00id 42384
Description: 00id 11291 proven without ax-mulcom 11073 but using ax-1ne0 11078. (Though note that the current version of 00id 11291 can be changed to avoid ax-icn 11068, ax-addcl 11069, ax-mulcl 11071, ax-i2m1 11077, ax-cnre 11082. Most of this is by using 0cnALT3 42236 instead of 0cn 11107). (Contributed by SN, 25-Dec-2023.) (Proof modification is discouraged.)
Assertion
Ref Expression
sn-00id (0 + 0) = 0

Proof of Theorem sn-00id
StepHypRef Expression
1 0re 11117 . . . . 5 0 ∈ ℝ
2 resubadd 42362 . . . . 5 ((0 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 − 0) = 0 ↔ (0 + 0) = 0))
31, 1, 1, 2mp3an 1463 . . . 4 ((0 − 0) = 0 ↔ (0 + 0) = 0)
43necon3abii 2971 . . 3 ((0 − 0) ≠ 0 ↔ ¬ (0 + 0) = 0)
5 sn-00idlem2 42382 . . . 4 ((0 − 0) ≠ 0 → (0 − 0) = 1)
6 sn-00idlem3 42383 . . . 4 ((0 − 0) = 1 → (0 + 0) = 0)
75, 6syl 17 . . 3 ((0 − 0) ≠ 0 → (0 + 0) = 0)
84, 7sylbir 235 . 2 (¬ (0 + 0) = 0 → (0 + 0) = 0)
98pm2.18i 129 1 (0 + 0) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   cresub 42348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-resub 42349
This theorem is referenced by:  re0m0e0  42385  sn-addrid  42404  sn-mul01  42409  sn-mul02  42435
  Copyright terms: Public domain W3C validator