Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubes Structured version   Visualization version   GIF version

Theorem 3cubes 39336
Description: Every rational number is a sum of three rational cubes. (S. Ryley, The Ladies' Diary 122 (1825), 35) (Contributed by Igor Ieskov, 22-Jan-2024.)
Assertion
Ref Expression
3cubes (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Distinct variable group:   𝑎,𝑏,𝑐,𝐴

Proof of Theorem 3cubes
StepHypRef Expression
1 3nn 11717 . . . . . . . . . 10 3 ∈ ℕ
21a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ)
3 3nn0 11916 . . . . . . . . . 10 3 ∈ ℕ0
43a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ0)
52, 4nnexpcld 13607 . . . . . . . 8 (¬ (3↑3) ∈ ℕ → (3↑3) ∈ ℕ)
65pm2.18i 131 . . . . . . 7 (3↑3) ∈ ℕ
7 nnq 12362 . . . . . . 7 ((3↑3) ∈ ℕ → (3↑3) ∈ ℚ)
86, 7mp1i 13 . . . . . 6 (𝐴 ∈ ℚ → (3↑3) ∈ ℚ)
9 qexpcl 13446 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℚ)
103, 9mpan2 689 . . . . . 6 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℚ)
11 qmulcl 12367 . . . . . 6 (((3↑3) ∈ ℚ ∧ (𝐴↑3) ∈ ℚ) → ((3↑3) · (𝐴↑3)) ∈ ℚ)
128, 10, 11syl2anc 586 . . . . 5 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑3)) ∈ ℚ)
13 1nn 11649 . . . . . 6 1 ∈ ℕ
14 nnq 12362 . . . . . 6 (1 ∈ ℕ → 1 ∈ ℚ)
1513, 14ax-mp 5 . . . . 5 1 ∈ ℚ
16 qsubcl 12368 . . . . 5 ((((3↑3) · (𝐴↑3)) ∈ ℚ ∧ 1 ∈ ℚ) → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
1712, 15, 16sylancl 588 . . . 4 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
18 qsqcl 13496 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 qmulcl 12367 . . . . . . 7 (((3↑3) ∈ ℚ ∧ (𝐴↑2) ∈ ℚ) → ((3↑3) · (𝐴↑2)) ∈ ℚ)
208, 18, 19syl2anc 586 . . . . . 6 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑2)) ∈ ℚ)
21 nnq 12362 . . . . . . . . 9 (3 ∈ ℕ → 3 ∈ ℚ)
221, 21ax-mp 5 . . . . . . . 8 3 ∈ ℚ
23 qsqcl 13496 . . . . . . . 8 (3 ∈ ℚ → (3↑2) ∈ ℚ)
2422, 23mp1i 13 . . . . . . 7 (𝐴 ∈ ℚ → (3↑2) ∈ ℚ)
25 qmulcl 12367 . . . . . . 7 (((3↑2) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((3↑2) · 𝐴) ∈ ℚ)
2624, 25mpancom 686 . . . . . 6 (𝐴 ∈ ℚ → ((3↑2) · 𝐴) ∈ ℚ)
27 qaddcl 12365 . . . . . 6 ((((3↑3) · (𝐴↑2)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
2820, 26, 27syl2anc 586 . . . . 5 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
29 qaddcl 12365 . . . . 5 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 3 ∈ ℚ) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
3028, 22, 29sylancl 588 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
31 id 22 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℚ)
32313cubeslem2 39331 . . . . 5 (𝐴 ∈ ℚ → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3332neqned 3023 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
34 qdivcl 12370 . . . 4 (((((3↑3) · (𝐴↑3)) − 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
3517, 30, 33, 34syl3anc 1367 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
36 qnegcl 12366 . . . . . . 7 (((3↑3) · (𝐴↑3)) ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
3712, 36syl 17 . . . . . 6 (𝐴 ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
38 qaddcl 12365 . . . . . 6 ((-((3↑3) · (𝐴↑3)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
3937, 26, 38syl2anc 586 . . . . 5 (𝐴 ∈ ℚ → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
40 qaddcl 12365 . . . . 5 (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 1 ∈ ℚ) → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
4139, 15, 40sylancl 588 . . . 4 (𝐴 ∈ ℚ → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
42 qdivcl 12370 . . . 4 ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4341, 30, 33, 42syl3anc 1367 . . 3 (𝐴 ∈ ℚ → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
44 qdivcl 12370 . . . 4 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4528, 30, 33, 44syl3anc 1367 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
46313cubeslem4 39335 . . 3 (𝐴 ∈ ℚ → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
47 oveq1 7163 . . . . . . 7 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑎↑3) = (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
4847oveq1d 7171 . . . . . 6 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((𝑎↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)))
4948oveq1d 7171 . . . . 5 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)))
5049eqeq2d 2832 . . . 4 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3))))
51 oveq1 7163 . . . . . . 7 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑏↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5251oveq2d 7172 . . . . . 6 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5352oveq1d 7171 . . . . 5 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)))
5453eqeq2d 2832 . . . 4 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3))))
55 oveq1 7163 . . . . . 6 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑐↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5655oveq2d 7172 . . . . 5 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5756eqeq2d 2832 . . . 4 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))))
5850, 54, 57rspc3ev 3637 . . 3 (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ) ∧ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
5935, 43, 45, 46, 58syl31anc 1369 . 2 (𝐴 ∈ ℚ → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
60 3anass 1091 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) ↔ (𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)))
61 qexpcl 13446 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑎↑3) ∈ ℚ)
623, 61mpan2 689 . . . . . . . . 9 (𝑎 ∈ ℚ → (𝑎↑3) ∈ ℚ)
63 simprl 769 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑏 ∈ ℚ)
64 qexpcl 13446 . . . . . . . . . 10 ((𝑏 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑏↑3) ∈ ℚ)
6563, 3, 64sylancl 588 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏↑3) ∈ ℚ)
66 qaddcl 12365 . . . . . . . . 9 (((𝑎↑3) ∈ ℚ ∧ (𝑏↑3) ∈ ℚ) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
6762, 65, 66syl2an2r 683 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
68 simprr 771 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑐 ∈ ℚ)
69 qexpcl 13446 . . . . . . . . 9 ((𝑐 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑐↑3) ∈ ℚ)
7068, 3, 69sylancl 588 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑐↑3) ∈ ℚ)
71 qaddcl 12365 . . . . . . . 8 ((((𝑎↑3) + (𝑏↑3)) ∈ ℚ ∧ (𝑐↑3) ∈ ℚ) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
7267, 70, 71syl2anc 586 . . . . . . 7 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
73 eleq1a 2908 . . . . . . 7 ((((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7472, 73syl 17 . . . . . 6 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7574a1i 11 . . . . 5 (⊤ → ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7660, 75syl5bi 244 . . . 4 (⊤ → ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7776rexlimdv3d 39329 . . 3 (⊤ → (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7877mptru 1544 . 2 (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)
7959, 78impbii 211 1 (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wtru 1538  wcel 2114  wne 3016  wrex 3139  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  0cn0 11898  cq 12349  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-seq 13371  df-exp 13431  df-dvds 15608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator