Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubes Structured version   Visualization version   GIF version

Theorem 3cubes 40535
Description: Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.)
Assertion
Ref Expression
3cubes (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Distinct variable group:   𝑎,𝑏,𝑐,𝐴

Proof of Theorem 3cubes
StepHypRef Expression
1 3nn 12080 . . . . . . . . . 10 3 ∈ ℕ
21a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ)
3 3nn0 12279 . . . . . . . . . 10 3 ∈ ℕ0
43a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ0)
52, 4nnexpcld 13988 . . . . . . . 8 (¬ (3↑3) ∈ ℕ → (3↑3) ∈ ℕ)
65pm2.18i 129 . . . . . . 7 (3↑3) ∈ ℕ
7 nnq 12730 . . . . . . 7 ((3↑3) ∈ ℕ → (3↑3) ∈ ℚ)
86, 7mp1i 13 . . . . . 6 (𝐴 ∈ ℚ → (3↑3) ∈ ℚ)
9 qexpcl 13826 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℚ)
103, 9mpan2 687 . . . . . 6 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℚ)
11 qmulcl 12735 . . . . . 6 (((3↑3) ∈ ℚ ∧ (𝐴↑3) ∈ ℚ) → ((3↑3) · (𝐴↑3)) ∈ ℚ)
128, 10, 11syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑3)) ∈ ℚ)
13 1nn 12012 . . . . . 6 1 ∈ ℕ
14 nnq 12730 . . . . . 6 (1 ∈ ℕ → 1 ∈ ℚ)
1513, 14ax-mp 5 . . . . 5 1 ∈ ℚ
16 qsubcl 12736 . . . . 5 ((((3↑3) · (𝐴↑3)) ∈ ℚ ∧ 1 ∈ ℚ) → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
1712, 15, 16sylancl 585 . . . 4 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
18 qsqcl 13877 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 qmulcl 12735 . . . . . . 7 (((3↑3) ∈ ℚ ∧ (𝐴↑2) ∈ ℚ) → ((3↑3) · (𝐴↑2)) ∈ ℚ)
208, 18, 19syl2anc 583 . . . . . 6 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑2)) ∈ ℚ)
21 nnq 12730 . . . . . . . . 9 (3 ∈ ℕ → 3 ∈ ℚ)
221, 21ax-mp 5 . . . . . . . 8 3 ∈ ℚ
23 qsqcl 13877 . . . . . . . 8 (3 ∈ ℚ → (3↑2) ∈ ℚ)
2422, 23mp1i 13 . . . . . . 7 (𝐴 ∈ ℚ → (3↑2) ∈ ℚ)
25 qmulcl 12735 . . . . . . 7 (((3↑2) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((3↑2) · 𝐴) ∈ ℚ)
2624, 25mpancom 684 . . . . . 6 (𝐴 ∈ ℚ → ((3↑2) · 𝐴) ∈ ℚ)
27 qaddcl 12733 . . . . . 6 ((((3↑3) · (𝐴↑2)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
2820, 26, 27syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
29 qaddcl 12733 . . . . 5 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 3 ∈ ℚ) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
3028, 22, 29sylancl 585 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
31 id 22 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℚ)
32313cubeslem2 40530 . . . . 5 (𝐴 ∈ ℚ → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3332neqned 2945 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
34 qdivcl 12738 . . . 4 (((((3↑3) · (𝐴↑3)) − 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
3517, 30, 33, 34syl3anc 1369 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
36 qnegcl 12734 . . . . . . 7 (((3↑3) · (𝐴↑3)) ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
3712, 36syl 17 . . . . . 6 (𝐴 ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
38 qaddcl 12733 . . . . . 6 ((-((3↑3) · (𝐴↑3)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
3937, 26, 38syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
40 qaddcl 12733 . . . . 5 (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 1 ∈ ℚ) → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
4139, 15, 40sylancl 585 . . . 4 (𝐴 ∈ ℚ → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
42 qdivcl 12738 . . . 4 ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4341, 30, 33, 42syl3anc 1369 . . 3 (𝐴 ∈ ℚ → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
44 qdivcl 12738 . . . 4 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4528, 30, 33, 44syl3anc 1369 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
46313cubeslem4 40534 . . 3 (𝐴 ∈ ℚ → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
47 oveq1 7302 . . . . . . 7 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑎↑3) = (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
4847oveq1d 7310 . . . . . 6 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((𝑎↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)))
4948oveq1d 7310 . . . . 5 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)))
5049eqeq2d 2744 . . . 4 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3))))
51 oveq1 7302 . . . . . . 7 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑏↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5251oveq2d 7311 . . . . . 6 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5352oveq1d 7310 . . . . 5 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)))
5453eqeq2d 2744 . . . 4 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3))))
55 oveq1 7302 . . . . . 6 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑐↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5655oveq2d 7311 . . . . 5 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5756eqeq2d 2744 . . . 4 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))))
5850, 54, 57rspc3ev 3576 . . 3 (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ) ∧ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
5935, 43, 45, 46, 58syl31anc 1371 . 2 (𝐴 ∈ ℚ → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
60 3anass 1093 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) ↔ (𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)))
61 qexpcl 13826 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑎↑3) ∈ ℚ)
623, 61mpan2 687 . . . . . . . . 9 (𝑎 ∈ ℚ → (𝑎↑3) ∈ ℚ)
63 simprl 767 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑏 ∈ ℚ)
64 qexpcl 13826 . . . . . . . . . 10 ((𝑏 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑏↑3) ∈ ℚ)
6563, 3, 64sylancl 585 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏↑3) ∈ ℚ)
66 qaddcl 12733 . . . . . . . . 9 (((𝑎↑3) ∈ ℚ ∧ (𝑏↑3) ∈ ℚ) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
6762, 65, 66syl2an2r 681 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
68 simprr 769 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑐 ∈ ℚ)
69 qexpcl 13826 . . . . . . . . 9 ((𝑐 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑐↑3) ∈ ℚ)
7068, 3, 69sylancl 585 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑐↑3) ∈ ℚ)
71 qaddcl 12733 . . . . . . . 8 ((((𝑎↑3) + (𝑏↑3)) ∈ ℚ ∧ (𝑐↑3) ∈ ℚ) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
7267, 70, 71syl2anc 583 . . . . . . 7 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
73 eleq1a 2829 . . . . . . 7 ((((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7472, 73syl 17 . . . . . 6 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7574a1i 11 . . . . 5 (⊤ → ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7660, 75syl5bi 241 . . . 4 (⊤ → ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7776rexlimdv3d 40528 . . 3 (⊤ → (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7877mptru 1544 . 2 (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)
7959, 78impbii 208 1 (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1537  wtru 1538  wcel 2101  wne 2938  wrex 3068  (class class class)co 7295  0cc0 10899  1c1 10900   + caddc 10902   · cmul 10904  cmin 11233  -cneg 11234   / cdiv 11660  cn 12001  2c2 12056  3c3 12057  0cn0 12261  cq 12716  cexp 13810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-3 12065  df-4 12066  df-5 12067  df-6 12068  df-7 12069  df-8 12070  df-9 12071  df-n0 12262  df-z 12348  df-uz 12611  df-q 12717  df-seq 13750  df-exp 13811  df-dvds 15992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator