Users' Mathboxes Mathbox for Igor Ieskov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3cubes Structured version   Visualization version   GIF version

Theorem 3cubes 42646
Description: Every rational number is a sum of three rational cubes. See S. Ryley, The Ladies' Diary 122 (1825), 35. (Contributed by Igor Ieskov, 22-Jan-2024.)
Assertion
Ref Expression
3cubes (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Distinct variable group:   𝑎,𝑏,𝑐,𝐴

Proof of Theorem 3cubes
StepHypRef Expression
1 3nn 12372 . . . . . . . . . 10 3 ∈ ℕ
21a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ)
3 3nn0 12571 . . . . . . . . . 10 3 ∈ ℕ0
43a1i 11 . . . . . . . . 9 (¬ (3↑3) ∈ ℕ → 3 ∈ ℕ0)
52, 4nnexpcld 14294 . . . . . . . 8 (¬ (3↑3) ∈ ℕ → (3↑3) ∈ ℕ)
65pm2.18i 129 . . . . . . 7 (3↑3) ∈ ℕ
7 nnq 13027 . . . . . . 7 ((3↑3) ∈ ℕ → (3↑3) ∈ ℚ)
86, 7mp1i 13 . . . . . 6 (𝐴 ∈ ℚ → (3↑3) ∈ ℚ)
9 qexpcl 14128 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℚ)
103, 9mpan2 690 . . . . . 6 (𝐴 ∈ ℚ → (𝐴↑3) ∈ ℚ)
11 qmulcl 13032 . . . . . 6 (((3↑3) ∈ ℚ ∧ (𝐴↑3) ∈ ℚ) → ((3↑3) · (𝐴↑3)) ∈ ℚ)
128, 10, 11syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑3)) ∈ ℚ)
13 1nn 12304 . . . . . 6 1 ∈ ℕ
14 nnq 13027 . . . . . 6 (1 ∈ ℕ → 1 ∈ ℚ)
1513, 14ax-mp 5 . . . . 5 1 ∈ ℚ
16 qsubcl 13033 . . . . 5 ((((3↑3) · (𝐴↑3)) ∈ ℚ ∧ 1 ∈ ℚ) → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
1712, 15, 16sylancl 585 . . . 4 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑3)) − 1) ∈ ℚ)
18 qsqcl 14180 . . . . . . 7 (𝐴 ∈ ℚ → (𝐴↑2) ∈ ℚ)
19 qmulcl 13032 . . . . . . 7 (((3↑3) ∈ ℚ ∧ (𝐴↑2) ∈ ℚ) → ((3↑3) · (𝐴↑2)) ∈ ℚ)
208, 18, 19syl2anc 583 . . . . . 6 (𝐴 ∈ ℚ → ((3↑3) · (𝐴↑2)) ∈ ℚ)
21 nnq 13027 . . . . . . . . 9 (3 ∈ ℕ → 3 ∈ ℚ)
221, 21ax-mp 5 . . . . . . . 8 3 ∈ ℚ
23 qsqcl 14180 . . . . . . . 8 (3 ∈ ℚ → (3↑2) ∈ ℚ)
2422, 23mp1i 13 . . . . . . 7 (𝐴 ∈ ℚ → (3↑2) ∈ ℚ)
25 qmulcl 13032 . . . . . . 7 (((3↑2) ∈ ℚ ∧ 𝐴 ∈ ℚ) → ((3↑2) · 𝐴) ∈ ℚ)
2624, 25mpancom 687 . . . . . 6 (𝐴 ∈ ℚ → ((3↑2) · 𝐴) ∈ ℚ)
27 qaddcl 13030 . . . . . 6 ((((3↑3) · (𝐴↑2)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
2820, 26, 27syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → (((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ)
29 qaddcl 13030 . . . . 5 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 3 ∈ ℚ) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
3028, 22, 29sylancl 585 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ)
31 id 22 . . . . . 6 (𝐴 ∈ ℚ → 𝐴 ∈ ℚ)
32313cubeslem2 42641 . . . . 5 (𝐴 ∈ ℚ → ¬ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) = 0)
3332neqned 2953 . . . 4 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0)
34 qdivcl 13035 . . . 4 (((((3↑3) · (𝐴↑3)) − 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
3517, 30, 33, 34syl3anc 1371 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
36 qnegcl 13031 . . . . . . 7 (((3↑3) · (𝐴↑3)) ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
3712, 36syl 17 . . . . . 6 (𝐴 ∈ ℚ → -((3↑3) · (𝐴↑3)) ∈ ℚ)
38 qaddcl 13030 . . . . . 6 ((-((3↑3) · (𝐴↑3)) ∈ ℚ ∧ ((3↑2) · 𝐴) ∈ ℚ) → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
3937, 26, 38syl2anc 583 . . . . 5 (𝐴 ∈ ℚ → (-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ)
40 qaddcl 13030 . . . . 5 (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ 1 ∈ ℚ) → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
4139, 15, 40sylancl 585 . . . 4 (𝐴 ∈ ℚ → ((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ)
42 qdivcl 13035 . . . 4 ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4341, 30, 33, 42syl3anc 1371 . . 3 (𝐴 ∈ ℚ → (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
44 qdivcl 13035 . . . 4 (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3) ≠ 0) → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
4528, 30, 33, 44syl3anc 1371 . . 3 (𝐴 ∈ ℚ → ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ)
46313cubeslem4 42645 . . 3 (𝐴 ∈ ℚ → 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
47 oveq1 7455 . . . . . . 7 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑎↑3) = (((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
4847oveq1d 7463 . . . . . 6 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((𝑎↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)))
4948oveq1d 7463 . . . . 5 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)))
5049eqeq2d 2751 . . . 4 (𝑎 = ((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3))))
51 oveq1 7455 . . . . . . 7 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑏↑3) = ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5251oveq2d 7464 . . . . . 6 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) = ((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5352oveq1d 7463 . . . . 5 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)))
5453eqeq2d 2751 . . . 4 (𝑏 = (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + (𝑏↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3))))
55 oveq1 7455 . . . . . 6 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝑐↑3) = (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))
5655oveq2d 7464 . . . . 5 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)))
5756eqeq2d 2751 . . . 4 (𝑐 = ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) → (𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (𝑐↑3)) ↔ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))))
5850, 54, 57rspc3ev 3652 . . 3 (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ (((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ ∧ ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3)) ∈ ℚ) ∧ 𝐴 = (((((((3↑3) · (𝐴↑3)) − 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3) + ((((-((3↑3) · (𝐴↑3)) + ((3↑2) · 𝐴)) + 1) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3)) + (((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) / ((((3↑3) · (𝐴↑2)) + ((3↑2) · 𝐴)) + 3))↑3))) → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
5935, 43, 45, 46, 58syl31anc 1373 . 2 (𝐴 ∈ ℚ → ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
60 3anass 1095 . . . . 5 ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) ↔ (𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)))
61 qexpcl 14128 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑎↑3) ∈ ℚ)
623, 61mpan2 690 . . . . . . . . 9 (𝑎 ∈ ℚ → (𝑎↑3) ∈ ℚ)
63 simprl 770 . . . . . . . . . 10 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑏 ∈ ℚ)
64 qexpcl 14128 . . . . . . . . . 10 ((𝑏 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑏↑3) ∈ ℚ)
6563, 3, 64sylancl 585 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑏↑3) ∈ ℚ)
66 qaddcl 13030 . . . . . . . . 9 (((𝑎↑3) ∈ ℚ ∧ (𝑏↑3) ∈ ℚ) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
6762, 65, 66syl2an2r 684 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → ((𝑎↑3) + (𝑏↑3)) ∈ ℚ)
68 simprr 772 . . . . . . . . 9 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → 𝑐 ∈ ℚ)
69 qexpcl 14128 . . . . . . . . 9 ((𝑐 ∈ ℚ ∧ 3 ∈ ℕ0) → (𝑐↑3) ∈ ℚ)
7068, 3, 69sylancl 585 . . . . . . . 8 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝑐↑3) ∈ ℚ)
71 qaddcl 13030 . . . . . . . 8 ((((𝑎↑3) + (𝑏↑3)) ∈ ℚ ∧ (𝑐↑3) ∈ ℚ) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
7267, 70, 71syl2anc 583 . . . . . . 7 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ)
73 eleq1a 2839 . . . . . . 7 ((((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) ∈ ℚ → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7472, 73syl 17 . . . . . 6 ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7574a1i 11 . . . . 5 (⊤ → ((𝑎 ∈ ℚ ∧ (𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ)) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7660, 75biimtrid 242 . . . 4 (⊤ → ((𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑐 ∈ ℚ) → (𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)))
7776rexlimdv3d 42639 . . 3 (⊤ → (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ))
7877mptru 1544 . 2 (∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)) → 𝐴 ∈ ℚ)
7959, 78impbii 209 1 (𝐴 ∈ ℚ ↔ ∃𝑎 ∈ ℚ ∃𝑏 ∈ ℚ ∃𝑐 ∈ ℚ 𝐴 = (((𝑎↑3) + (𝑏↑3)) + (𝑐↑3)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  0cn0 12553  cq 13013  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-seq 14053  df-exp 14113  df-dvds 16303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator