| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotr | Structured version Visualization version GIF version | ||
| Description: Double negation elimination. Converse of notnot 142 and one implication of notnotb 315. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable". (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| notnotr | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.18 128 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | |
| 2 | 1 | jarli 126 | 1 ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: notnotrd 133 con2d 134 con3d 152 notnotb 315 necon1ad 2942 necon4bd 2945 noetasuplem4 27646 eulercrct 30186 expgt0b 32761 notornotel1 38079 mpobi123f 38146 mptbi12f 38150 oexpreposd 42299 axfrege31 43810 clsk1independent 44023 con3ALT2 44508 zfregs2VD 44818 con3ALTVD 44893 notnotrALT2 44904 suplesup 45323 |
| Copyright terms: Public domain | W3C validator |