| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotr | Structured version Visualization version GIF version | ||
| Description: Double negation elimination. Converse of notnot 142 and one implication of notnotb 315. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable". (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| notnotr | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.18 128 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | |
| 2 | 1 | jarli 126 | 1 ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: notnotrd 133 con2d 134 con3d 152 notnotb 315 necon1ad 2942 necon4bd 2945 noetasuplem4 27624 eulercrct 30144 expgt0b 32714 notornotel1 38062 mpobi123f 38129 mptbi12f 38133 oexpreposd 42283 axfrege31 43795 clsk1independent 44008 con3ALT2 44493 zfregs2VD 44803 con3ALTVD 44878 notnotrALT2 44889 suplesup 45308 |
| Copyright terms: Public domain | W3C validator |