MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notnotr Structured version   Visualization version   GIF version

Theorem notnotr 130
Description: Double negation elimination. Converse of notnot 142 and one implication of notnotb 315. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable". (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
notnotr (¬ ¬ 𝜑𝜑)

Proof of Theorem notnotr
StepHypRef Expression
1 pm2.18 128 . 2 ((¬ 𝜑𝜑) → 𝜑)
21jarli 126 1 (¬ ¬ 𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  notnotrd  133  con2d  134  con3d  152  notnotb  315  necon1ad  2953  necon4bd  2956  noetasuplem4  27777  eulercrct  30252  expgt0b  32798  notornotel1  38042  mpobi123f  38109  mptbi12f  38113  oexpreposd  42294  axfrege31  43781  clsk1independent  43994  con3ALT2  44487  zfregs2VD  44798  con3ALTVD  44873  notnotrALT2  44884  suplesup  45239
  Copyright terms: Public domain W3C validator