| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notnotr | Structured version Visualization version GIF version | ||
| Description: Double negation elimination. Converse of notnot 142 and one implication of notnotb 315. Theorem *2.14 of [WhiteheadRussell] p. 102. This was the fifth axiom of Frege, specifically Proposition 31 of [Frege1879] p. 44. In classical logic (our logic) this is always true. In intuitionistic logic this is not always true, and formulas for which it is true are called "stable". (Contributed by NM, 29-Dec-1992.) (Proof shortened by David Harvey, 5-Sep-1999.) (Proof shortened by Josh Purinton, 29-Dec-2000.) |
| Ref | Expression |
|---|---|
| notnotr | ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.18 128 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | |
| 2 | 1 | jarli 126 | 1 ⊢ (¬ ¬ 𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: notnotrd 133 con2d 134 con3d 152 notnotb 315 necon1ad 2945 necon4bd 2948 noetasuplem4 27675 eulercrct 30222 expgt0b 32799 notornotel1 38145 mpobi123f 38212 mptbi12f 38216 oexpreposd 42425 axfrege31 43936 clsk1independent 44149 con3ALT2 44633 zfregs2VD 44943 con3ALTVD 45018 notnotrALT2 45029 suplesup 45448 |
| Copyright terms: Public domain | W3C validator |