MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.49 Structured version   Visualization version   GIF version

Theorem pm2.49 884
Description: Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.49 (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))

Proof of Theorem pm2.49
StepHypRef Expression
1 pm2.46 881 . 2 (¬ (𝜑𝜓) → ¬ 𝜓)
21olcd 872 1 (¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator