HomeHome Metamath Proof Explorer
Theorem List (p. 9 of 465)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29288)
  Hilbert Space Explorer  Hilbert Space Explorer
(29289-30811)
  Users' Mathboxes  Users' Mathboxes
(30812-46499)
 

Theorem List for Metamath Proof Explorer - 801-900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm5.74da 801 Distribution of implication over biconditional (deduction form). Variant of pm5.74d 272. (Contributed by NM, 4-May-2007.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
 
Theorembitr 802 Theorem *4.22 of [WhiteheadRussell] p. 117. bitri 274 in closed form. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
 
Theorembiantr 803 A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.)
(((𝜑𝜓) ∧ (𝜒𝜓)) → (𝜑𝜒))
 
Theorempm4.14 804 Theorem *4.14 of [WhiteheadRussell] p. 117. Related to con34b 316. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))
 
Theorempm3.37 805 Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.)
(((𝜑𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓))
 
Theoremanim12 806 Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 609. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
 
Theorempm3.4 807 Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.)
((𝜑𝜓) → (𝜑𝜓))
 
Theoremexbiri 808 Inference form of exbir 42079. This proof is exbiriVD 42455 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))
 
Theorempm2.61ian 809 Elimination of an antecedent. (Contributed by NM, 1-Jan-2005.)
((𝜑𝜓) → 𝜒)    &   ((¬ 𝜑𝜓) → 𝜒)       (𝜓𝜒)
 
Theorempm2.61dan 810 Elimination of an antecedent. (Contributed by NM, 1-Jan-2005.)
((𝜑𝜓) → 𝜒)    &   ((𝜑 ∧ ¬ 𝜓) → 𝜒)       (𝜑𝜒)
 
Theorempm2.61ddan 811 Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.)
((𝜑𝜓) → 𝜃)    &   ((𝜑𝜒) → 𝜃)    &   ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃)       (𝜑𝜃)
 
Theorempm2.61dda 812 Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.)
((𝜑 ∧ ¬ 𝜓) → 𝜃)    &   ((𝜑 ∧ ¬ 𝜒) → 𝜃)    &   ((𝜑 ∧ (𝜓𝜒)) → 𝜃)       (𝜑𝜃)
 
Theoremmtand 813 A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
(𝜑 → ¬ 𝜒)    &   ((𝜑𝜓) → 𝜒)       (𝜑 → ¬ 𝜓)
 
Theorempm2.65da 814 Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜓) → ¬ 𝜒)       (𝜑 → ¬ 𝜓)
 
Theoremcondan 815 Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.)
((𝜑 ∧ ¬ 𝜓) → 𝜒)    &   ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒)       (𝜑𝜓)
 
Theorembiadan 816 An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii 819 and elelb 35090. (Contributed by BJ, 4-Mar-2023.) (Proof shortened by Wolf Lammen, 8-Mar-2023.)
((𝜑𝜓) ↔ ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒))))
 
Theorembiadani 817 Inference associated with biadan 816. (Contributed by BJ, 4-Mar-2023.)
(𝜑𝜓)       ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
 
TheorembiadaniALT 818 Alternate proof of biadani 817 not using biadan 816. (Contributed by BJ, 4-Mar-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)       ((𝜓 → (𝜑𝜒)) ↔ (𝜑 ↔ (𝜓𝜒)))
 
Theorembiadanii 819 Inference associated with biadani 817. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.)
(𝜑𝜓)    &   (𝜓 → (𝜑𝜒))       (𝜑 ↔ (𝜓𝜒))
 
Theorembiadanid 820 Deduction associated with biadani 817. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.)
((𝜑𝜓) → 𝜒)    &   ((𝜑𝜒) → (𝜓𝜃))       (𝜑 → (𝜓 ↔ (𝜒𝜃)))
 
Theorempm5.1 821 Two propositions are equivalent if they are both true. Theorem *5.1 of [WhiteheadRussell] p. 123. (Contributed by NM, 21-May-1994.)
((𝜑𝜓) → (𝜑𝜓))
 
Theorempm5.21 822 Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.)
((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑𝜓))
 
Theorempm5.35 823 Theorem *5.35 of [WhiteheadRussell] p. 125. Closed form of 2thd 264. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
 
Theoremabai 824 Introduce one conjunct as an antecedent to the other. "abai" stands for "and, biconditional, and, implication". (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
((𝜑𝜓) ↔ (𝜑 ∧ (𝜑𝜓)))
 
Theorempm4.45im 825 Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.)
(𝜑 ↔ (𝜑 ∧ (𝜓𝜑)))
 
Theoremimpimprbi 826 An implication and its reverse are equivalent exactly when both operands are equivalent. The right hand side resembles that of dfbi2 475, but is a weaker operator than . Note that an implication and its reverse can never be simultaneously false, because of pm2.521 176. (Contributed by Wolf Lammen, 18-Dec-2023.)
((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜓𝜑)))
 
Theoremnan 827 Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)
((𝜑 → ¬ (𝜓𝜒)) ↔ ((𝜑𝜓) → ¬ 𝜒))
 
Theorempm5.31 828 Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))
 
Theorempm5.31r 829 Variant of pm5.31 828. (Contributed by Rodolfo Medina, 15-Oct-2010.)
((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜒𝜓)))
 
Theorempm4.15 830 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
(((𝜑𝜓) → ¬ 𝜒) ↔ ((𝜓𝜒) → ¬ 𝜑))
 
Theorempm5.36 831 Theorem *5.36 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∧ (𝜑𝜓)) ↔ (𝜓 ∧ (𝜑𝜓)))
 
Theoremannotanannot 832 A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022.) (Proof shortened by Wolf Lammen, 1-Apr-2022.)
((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))
 
Theorempm5.33 833 Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜑 ∧ (𝜓𝜒)) ↔ (𝜑 ∧ ((𝜑𝜓) → 𝜒)))
 
Theoremsyl12anc 834 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   ((𝜓 ∧ (𝜒𝜃)) → 𝜏)       (𝜑𝜏)
 
Theoremsyl21anc 835 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   (((𝜓𝜒) ∧ 𝜃) → 𝜏)       (𝜑𝜏)
 
Theoremsyl22anc 836 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑𝜏)    &   (((𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂)       (𝜑𝜂)
 
Theoremsyl1111anc 837 Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1373 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑𝜏)    &   ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂)       (𝜑𝜂)
 
Theoremsyldbl2 838 Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.)
((𝜑𝜓) → (𝜓𝜃))       ((𝜑𝜓) → 𝜃)
 
Theoremmpsyl4anc 839 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.)
𝜑    &   𝜓    &   𝜒    &   (𝜃𝜏)    &   ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂)       (𝜃𝜂)
 
Theorempm4.87 840 Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
(((((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))) ∧ ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))) ∧ ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) → 𝜒)))
 
Theorembimsc1 841 Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.)
(((𝜑𝜓) ∧ (𝜒 ↔ (𝜓𝜑))) → (𝜒𝜑))
 
Theorema2and 842 Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
(𝜑 → ((𝜓𝜌) → (𝜏𝜃)))    &   (𝜑 → ((𝜓𝜌) → 𝜒))       (𝜑 → (((𝜓𝜒) → 𝜏) → ((𝜓𝜌) → 𝜃)))
 
Theoremanimpimp2impd 843 Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.)
((𝜓𝜑) → (𝜒 → (𝜃𝜂)))    &   ((𝜓 ∧ (𝜑𝜃)) → (𝜂𝜏))       (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜃𝜏))))
 
1.2.7  Logical disjunction

This section defines disjunction of two formulas, denoted by infix " " and read "or". It is defined in terms of implication and negation, which is possible in classical logic (but not in intuitionistic logic: see iset.mm). This section contains only theorems proved without df-an 397 (theorems that are proved using df-an 397 are deferred to the next section). Basic theorems that help simplifying and applying disjunction are olc 865, orc 864, and orcom 867.

As mentioned in the "note on definitions" in the section comment for logical equivalence, all theorems in this and the previous section can be stated in terms of implication and negation only. Additionally, in classical logic (but not in intuitionistic logic: see iset.mm), it is also possible to translate conjunction into disjunction and conversely via the De Morgan law anor 980: conjunction and disjunction are dual connectives. Either is sufficient to develop all propositional calculus of the logic (together with implication and negation). In practice, conjunction is more efficient, its big advantage being the possibility to use it to group antecedents in a convenient way, using imp 407 and ex 413 as noted in the previous section.

An illustration of the conservativity of df-an 397 is given by orim12dALT 909, which is an alternate proof of orim12d 962 not using df-an 397.

 
Syntaxwo 844 Extend wff definition to include disjunction ("or").
wff (𝜑𝜓)
 
Definitiondf-or 845 Define disjunction (logical "or"). Definition of [Margaris] p. 49. When the left operand, right operand, or both are true, the result is true; when both sides are false, the result is false. For example, it is true that (2 = 3 ∨ 4 = 4) (ex-or 28793). After we define the constant true (df-tru 1542) and the constant false (df-fal 1552), we will be able to prove these truth table values: ((⊤ ∨ ⊤) ↔ ⊤) (truortru 1576), ((⊤ ∨ ⊥) ↔ ⊤) (truorfal 1577), ((⊥ ∨ ⊤) ↔ ⊤) (falortru 1578), and ((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1579).

Contrast with (df-an 397), (wi 4), (df-nan 1487), and (df-xor 1507). (Contributed by NM, 27-Dec-1992.)

((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theorempm4.64 846 Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜓) ↔ (𝜑𝜓))
 
Theorempm4.66 847 Theorem *4.66 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓))
 
Theorempm2.53 848 Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → (¬ 𝜑𝜓))
 
Theorempm2.54 849 Theorem *2.54 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((¬ 𝜑𝜓) → (𝜑𝜓))
 
Theoremimor 850 Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.)
((𝜑𝜓) ↔ (¬ 𝜑𝜓))
 
Theoremimori 851 Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.)
(𝜑𝜓)       𝜑𝜓)
 
Theoremimorri 852 Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝜑𝜓)       (𝜑𝜓)
 
Theorempm4.62 853 Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
 
Theoremjaoi 854 Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.)
(𝜑𝜓)    &   (𝜒𝜓)       ((𝜑𝜒) → 𝜓)
 
Theoremjao1i 855 Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
(𝜓 → (𝜒𝜑))       ((𝜑𝜓) → (𝜒𝜑))
 
Theoremjaod 856 Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))       (𝜑 → ((𝜓𝜃) → 𝜒))
 
Theoremmpjaod 857 Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜃𝜒))    &   (𝜑 → (𝜓𝜃))       (𝜑𝜒)
 
Theoremori 858 Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.)
(𝜑𝜓)       𝜑𝜓)
 
Theoremorri 859 Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.)
𝜑𝜓)       (𝜑𝜓)
 
Theoremorrd 860 Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.)
(𝜑 → (¬ 𝜓𝜒))       (𝜑 → (𝜓𝜒))
 
Theoremord 861 Deduce implication from disjunction. (Contributed by NM, 18-May-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (¬ 𝜓𝜒))
 
Theoremorci 862 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
𝜑       (𝜑𝜓)
 
Theoremolci 863 Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.)
𝜑       (𝜓𝜑)
 
Theoremorc 864 Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.)
(𝜑 → (𝜑𝜓))
 
Theoremolc 865 Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.)
(𝜑 → (𝜓𝜑))
 
Theorempm1.4 866 Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → (𝜓𝜑))
 
Theoremorcom 867 Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.)
((𝜑𝜓) ↔ (𝜓𝜑))
 
Theoremorcomd 868 Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜒𝜓))
 
Theoremorcoms 869 Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.)
((𝜑𝜓) → 𝜒)       ((𝜓𝜑) → 𝜒)
 
Theoremorcd 870 Deduction introducing a disjunct. A translation of natural deduction rule IR ( insertion right), see natded 28775. (Contributed by NM, 20-Sep-2007.)
(𝜑𝜓)       (𝜑 → (𝜓𝜒))
 
Theoremolcd 871 Deduction introducing a disjunct. A translation of natural deduction rule IL ( insertion left), see natded 28775. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
(𝜑𝜓)       (𝜑 → (𝜒𝜓))
 
Theoremorcs 872 Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.)
((𝜑𝜓) → 𝜒)       (𝜑𝜒)
 
Theoremolcs 873 Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
((𝜑𝜓) → 𝜒)       (𝜓𝜒)
 
Theoremolcnd 874 A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → ¬ 𝜒)       (𝜑𝜓)
 
TheoremunitreslOLD 875 Obsolete version of olcnd 874 as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → ¬ 𝜒)       (𝜑𝜓)
 
Theoremorcnd 876 A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → ¬ 𝜓)       (𝜑𝜒)
 
Theoremmtord 877 A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ¬ 𝜓)
 
Theorempm3.2ni 878 Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.)
¬ 𝜑    &    ¬ 𝜓        ¬ (𝜑𝜓)
 
Theorempm2.45 879 Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → ¬ 𝜑)
 
Theorempm2.46 880 Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → ¬ 𝜓)
 
Theorempm2.47 881 Theorem *2.47 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (¬ 𝜑𝜓))
 
Theorempm2.48 882 Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (𝜑 ∨ ¬ 𝜓))
 
Theorempm2.49 883 Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(¬ (𝜑𝜓) → (¬ 𝜑 ∨ ¬ 𝜓))
 
Theoremnorbi 884 If neither of two propositions is true, then these propositions are equivalent. (Contributed by BJ, 26-Apr-2019.)
(¬ (𝜑𝜓) → (𝜑𝜓))
 
Theoremnbior 885 If two propositions are not equivalent, then at least one is true. (Contributed by BJ, 19-Apr-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.)
(¬ (𝜑𝜓) → (𝜑𝜓))
 
Theoremorel1 886 Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.)
𝜑 → ((𝜑𝜓) → 𝜓))
 
Theorempm2.25 887 Theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
(𝜑 ∨ ((𝜑𝜓) → 𝜓))
 
Theoremorel2 888 Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
𝜑 → ((𝜓𝜑) → 𝜓))
 
Theorempm2.67-2 889 Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜒) → 𝜓) → (𝜑𝜓))
 
Theorempm2.67 890 Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) → 𝜓) → (𝜑𝜓))
 
Theoremcurryax 891 A non-intuitionistic positive statement, sometimes called a paradox of material implication. Sometimes called Curry's axiom. Similar to exmid 892 (obtained by substituting for 𝜓) but positive. For another non-intuitionistic positive statement, see peirce 201. (Contributed by BJ, 4-Apr-2021.)
(𝜑 ∨ (𝜑𝜓))
 
Theoremexmid 892 Law of excluded middle, also called the principle of tertium non datur. Theorem *2.11 of [WhiteheadRussell] p. 101. It says that something is either true or not true; there are no in-between values of truth. This is an essential distinction of our classical logic and is not a theorem of intuitionistic logic. In intuitionistic logic, if this statement is true for some 𝜑, then 𝜑 is decidable. (Contributed by NM, 29-Dec-1992.)
(𝜑 ∨ ¬ 𝜑)
 
Theoremexmidd 893 Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.)
(𝜑 → (𝜓 ∨ ¬ 𝜓))
 
Theorempm2.1 894 Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.)
𝜑𝜑)
 
Theorempm2.13 895 Theorem *2.13 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.)
(𝜑 ∨ ¬ ¬ ¬ 𝜑)
 
Theorempm2.621 896 Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
((𝜑𝜓) → ((𝜑𝜓) → 𝜓))
 
Theorempm2.62 897 Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.)
((𝜑𝜓) → ((𝜑𝜓) → 𝜓))
 
Theorempm2.68 898 Theorem *2.68 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) → 𝜓) → (𝜑𝜓))
 
Theoremdfor2 899 Logical 'or' expressed in terms of implication only. Theorem *5.25 of [WhiteheadRussell] p. 124. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Wolf Lammen, 20-Oct-2012.)
((𝜑𝜓) ↔ ((𝜑𝜓) → 𝜓))
 
Theorempm2.07 900 Theorem *2.07 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.)
(𝜑 → (𝜑𝜑))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46499
  Copyright terms: Public domain < Previous  Next >