![]() |
Metamath
Proof Explorer Theorem List (p. 9 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30159) |
![]() (30160-31682) |
![]() (31683-47806) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pm5.21nd 801 | Eliminate an antecedent implied by each side of a biconditional. Variant of pm5.21ndd 381. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ (𝜃 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
Theorem | pm3.35 802 | Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. Variant of pm2.27 42. (Contributed by NM, 14-Dec-2002.) |
⊢ ((𝜑 ∧ (𝜑 → 𝜓)) → 𝜓) | ||
Theorem | pm5.74da 803 | Distribution of implication over biconditional (deduction form). Variant of pm5.74d 273. (Contributed by NM, 4-May-2007.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜓 → 𝜃))) | ||
Theorem | bitr 804 | Theorem *4.22 of [WhiteheadRussell] p. 117. bitri 275 in closed form. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | ||
Theorem | biantr 805 | A transitive law of equivalence. Compare Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 18-Aug-1993.) |
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜓)) → (𝜑 ↔ 𝜒)) | ||
Theorem | pm4.14 806 | Theorem *4.14 of [WhiteheadRussell] p. 117. Related to con34b 316. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) | ||
Theorem | pm3.37 807 | Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) | ||
Theorem | anim12 808 | Conjoin antecedents and consequents of two premises. This is the closed theorem form of anim12d 610. Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it praeclarum theorema (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | ||
Theorem | pm3.4 809 | Conjunction implies implication. Theorem *3.4 of [WhiteheadRussell] p. 113. (Contributed by NM, 31-Jul-1995.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | exbiri 810 | Inference form of exbir 43225. This proof is exbiriVD 43601 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒))) | ||
Theorem | pm2.61ian 811 | Elimination of an antecedent. (Contributed by NM, 1-Jan-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((¬ 𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → 𝜒) | ||
Theorem | pm2.61dan 812 | Elimination of an antecedent. (Contributed by NM, 1-Jan-2005.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | pm2.61ddan 813 | Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ (¬ 𝜓 ∧ ¬ 𝜒)) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | pm2.61dda 814 | Elimination of two antecedents. (Contributed by NM, 9-Jul-2013.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ ¬ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | mtand 815 | A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | pm2.65da 816 | Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝜒) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | condan 817 | Proof by contradiction. (Contributed by NM, 9-Feb-2006.) (Proof shortened by Wolf Lammen, 19-Jun-2014.) |
⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ ¬ 𝜓) → ¬ 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | biadan 818 | An implication is equivalent to the equivalence of some implied equivalence and some other equivalence involving a conjunction. A utility lemma as illustrated in biadanii 821 and elelb 35766. (Contributed by BJ, 4-Mar-2023.) (Proof shortened by Wolf Lammen, 8-Mar-2023.) |
⊢ ((𝜑 → 𝜓) ↔ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒)))) | ||
Theorem | biadani 819 | Inference associated with biadan 818. (Contributed by BJ, 4-Mar-2023.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | biadaniALT 820 | Alternate proof of biadani 819 not using biadan 818. (Contributed by BJ, 4-Mar-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜓 → (𝜑 ↔ 𝜒)) ↔ (𝜑 ↔ (𝜓 ∧ 𝜒))) | ||
Theorem | biadanii 821 | Inference associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.) (Proof shortened by BJ, 4-Mar-2023.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜓 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | ||
Theorem | biadanid 822 | Deduction associated with biadani 819. Add a conjunction to an equivalence. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | ||
Theorem | pm5.1 823 | Two propositions are equivalent if they are both true. Theorem *5.1 of [WhiteheadRussell] p. 123. (Contributed by NM, 21-May-1994.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ 𝜓)) | ||
Theorem | pm5.21 824 | Two propositions are equivalent if they are both false. Theorem *5.21 of [WhiteheadRussell] p. 124. (Contributed by NM, 21-May-1994.) |
⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → (𝜑 ↔ 𝜓)) | ||
Theorem | pm5.35 825 | Theorem *5.35 of [WhiteheadRussell] p. 125. Closed form of 2thd 265. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ↔ 𝜒))) | ||
Theorem | abai 826 | Introduce one conjunct as an antecedent to the other. "abai" stands for "and, biconditional, and, implication". (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ (𝜑 → 𝜓))) | ||
Theorem | pm4.45im 827 | Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.) |
⊢ (𝜑 ↔ (𝜑 ∧ (𝜓 → 𝜑))) | ||
Theorem | impimprbi 828 | An implication and its reverse are equivalent exactly when both operands are equivalent. The right hand side resembles that of dfbi2 476, but ↔ is a weaker operator than ∧. Note that an implication and its reverse can never be simultaneously false, because of pm2.521 176. (Contributed by Wolf Lammen, 18-Dec-2023.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ↔ (𝜓 → 𝜑))) | ||
Theorem | nan 829 | Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.) |
⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) → ¬ 𝜒)) | ||
Theorem | pm5.31 830 | Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜒 ∧ (𝜑 → 𝜓)) → (𝜑 → (𝜓 ∧ 𝜒))) | ||
Theorem | pm5.31r 831 | Variant of pm5.31 830. (Contributed by Rodolfo Medina, 15-Oct-2010.) |
⊢ ((𝜒 ∧ (𝜑 → 𝜓)) → (𝜑 → (𝜒 ∧ 𝜓))) | ||
Theorem | pm4.15 832 | Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.) |
⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ ((𝜓 ∧ 𝜒) → ¬ 𝜑)) | ||
Theorem | pm5.36 833 | Theorem *5.36 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ∧ (𝜑 ↔ 𝜓)) ↔ (𝜓 ∧ (𝜑 ↔ 𝜓))) | ||
Theorem | annotanannot 834 | A conjunction with a negated conjunction. (Contributed by AV, 8-Mar-2022.) (Proof shortened by Wolf Lammen, 1-Apr-2022.) |
⊢ ((𝜑 ∧ ¬ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm5.33 835 | Theorem *5.33 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ∧ (𝜓 → 𝜒)) ↔ (𝜑 ∧ ((𝜑 ∧ 𝜓) → 𝜒))) | ||
Theorem | syl12anc 836 | Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl21anc 837 | Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | syl22anc 838 | Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏)) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syl1111anc 839 | Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1375 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | syldbl2 840 | Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020.) |
⊢ ((𝜑 ∧ 𝜓) → (𝜓 → 𝜃)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | mpsyl4anc 841 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ (𝜃 → 𝜏) & ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜂) ⇒ ⊢ (𝜃 → 𝜂) | ||
Theorem | pm4.87 842 | Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.) |
⊢ (((((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) ∧ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒)))) ∧ ((𝜓 → (𝜑 → 𝜒)) ↔ ((𝜓 ∧ 𝜑) → 𝜒))) | ||
Theorem | bimsc1 843 | Removal of conjunct from one side of an equivalence. (Contributed by NM, 21-Jun-1993.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 ↔ (𝜓 ∧ 𝜑))) → (𝜒 ↔ 𝜑)) | ||
Theorem | a2and 844 | Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) & ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) ⇒ ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) | ||
Theorem | animpimp2impd 845 | Deduction deriving nested implications from conjunctions. (Contributed by AV, 21-Aug-2022.) |
⊢ ((𝜓 ∧ 𝜑) → (𝜒 → (𝜃 → 𝜂))) & ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜃)) → (𝜂 → 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → (𝜃 → 𝜏)))) | ||
This section defines disjunction of two formulas, denoted by infix "∨ " and read "or". It is defined in terms of implication and negation, which is possible in classical logic (but not in intuitionistic logic: see iset.mm). This section contains only theorems proved without df-an 398 (theorems that are proved using df-an 398 are deferred to the next section). Basic theorems that help simplifying and applying disjunction are olc 867, orc 866, and orcom 869. As mentioned in the "note on definitions" in the section comment for logical equivalence, all theorems in this and the previous section can be stated in terms of implication and negation only. Additionally, in classical logic (but not in intuitionistic logic: see iset.mm), it is also possible to translate conjunction into disjunction and conversely via the De Morgan law anor 982: conjunction and disjunction are dual connectives. Either is sufficient to develop all propositional calculus of the logic (together with implication and negation). In practice, conjunction is more efficient, its big advantage being the possibility to use it to group antecedents in a convenient way, using imp 408 and ex 414 as noted in the previous section. An illustration of the conservativity of df-an 398 is given by orim12dALT 911, which is an alternate proof of orim12d 964 not using df-an 398. | ||
Syntax | wo 846 | Extend wff definition to include disjunction ("or"). |
wff (𝜑 ∨ 𝜓) | ||
Definition | df-or 847 |
Define disjunction (logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 29664). After we define the constant
true ⊤ (df-tru 1545) and the constant false ⊥ (df-fal 1555), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1579), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1580), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1581), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1582).
Contrast with ∧ (df-an 398), → (wi 4), ⊼ (df-nan 1491), and ⊻ (df-xor 1511). (Contributed by NM, 27-Dec-1992.) |
⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | ||
Theorem | pm4.64 848 | Theorem *4.64 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ ((¬ 𝜑 → 𝜓) ↔ (𝜑 ∨ 𝜓)) | ||
Theorem | pm4.66 849 | Theorem *4.66 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ ((¬ 𝜑 → ¬ 𝜓) ↔ (𝜑 ∨ ¬ 𝜓)) | ||
Theorem | pm2.53 850 | Theorem *2.53 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | ||
Theorem | pm2.54 851 | Theorem *2.54 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ ((¬ 𝜑 → 𝜓) → (𝜑 ∨ 𝜓)) | ||
Theorem | imor 852 | Implication in terms of disjunction. Theorem *4.6 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-1993.) |
⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | ||
Theorem | imori 853 | Infer disjunction from implication. (Contributed by NM, 12-Mar-2012.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (¬ 𝜑 ∨ 𝜓) | ||
Theorem | imorri 854 | Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (¬ 𝜑 ∨ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | pm4.62 855 | Theorem *4.62 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | ||
Theorem | jaoi 856 | Inference disjoining the antecedents of two implications. (Contributed by NM, 5-Apr-1994.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) ⇒ ⊢ ((𝜑 ∨ 𝜒) → 𝜓) | ||
Theorem | jao1i 857 | Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.) |
⊢ (𝜓 → (𝜒 → 𝜑)) ⇒ ⊢ ((𝜑 ∨ 𝜓) → (𝜒 → 𝜑)) | ||
Theorem | jaod 858 | Deduction disjoining the antecedents of two implications. (Contributed by NM, 18-Aug-1994.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∨ 𝜃) → 𝜒)) | ||
Theorem | mpjaod 859 | Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜃 → 𝜒)) & ⊢ (𝜑 → (𝜓 ∨ 𝜃)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | ori 860 | Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) |
⊢ (𝜑 ∨ 𝜓) ⇒ ⊢ (¬ 𝜑 → 𝜓) | ||
Theorem | orri 861 | Infer disjunction from implication. (Contributed by NM, 11-Jun-1994.) |
⊢ (¬ 𝜑 → 𝜓) ⇒ ⊢ (𝜑 ∨ 𝜓) | ||
Theorem | orrd 862 | Deduce disjunction from implication. (Contributed by NM, 27-Nov-1995.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | ||
Theorem | ord 863 | Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) | ||
Theorem | orci 864 | Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
⊢ 𝜑 ⇒ ⊢ (𝜑 ∨ 𝜓) | ||
Theorem | olci 865 | Deduction introducing a disjunct. (Contributed by NM, 19-Jan-2008.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
⊢ 𝜑 ⇒ ⊢ (𝜓 ∨ 𝜑) | ||
Theorem | orc 866 | Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝜑 → (𝜑 ∨ 𝜓)) | ||
Theorem | olc 867 | Introduction of a disjunct. Axiom *1.3 of [WhiteheadRussell] p. 96. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝜑 → (𝜓 ∨ 𝜑)) | ||
Theorem | pm1.4 868 | Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | ||
Theorem | orcom 869 | Commutative law for disjunction. Theorem *4.31 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 15-Nov-2012.) |
⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | ||
Theorem | orcomd 870 | Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜓)) | ||
Theorem | orcoms 871 | Commutation of disjuncts in antecedent. (Contributed by NM, 2-Dec-2012.) |
⊢ ((𝜑 ∨ 𝜓) → 𝜒) ⇒ ⊢ ((𝜓 ∨ 𝜑) → 𝜒) | ||
Theorem | orcd 872 | Deduction introducing a disjunct. A translation of natural deduction rule ∨ IR (∨ insertion right), see natded 29646. (Contributed by NM, 20-Sep-2007.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | ||
Theorem | olcd 873 | Deduction introducing a disjunct. A translation of natural deduction rule ∨ IL (∨ insertion left), see natded 29646. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → (𝜒 ∨ 𝜓)) | ||
Theorem | orcs 874 | Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
⊢ ((𝜑 ∨ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | olcs 875 | Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
⊢ ((𝜑 ∨ 𝜓) → 𝜒) ⇒ ⊢ (𝜓 → 𝜒) | ||
Theorem | olcnd 876 | A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2024.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | unitreslOLD 877 | Obsolete version of olcnd 876 as of 13-Apr-2024. (Contributed by Giovanni Mascellani, 15-Sep-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | orcnd 878 | A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | mtord 879 | A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → ¬ 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | pm3.2ni 880 | Infer negated disjunction of negated premises. (Contributed by NM, 4-Apr-1995.) |
⊢ ¬ 𝜑 & ⊢ ¬ 𝜓 ⇒ ⊢ ¬ (𝜑 ∨ 𝜓) | ||
Theorem | pm2.45 881 | Theorem *2.45 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜑) | ||
Theorem | pm2.46 882 | Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) | ||
Theorem | pm2.47 883 | Theorem *2.47 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∨ 𝜓)) | ||
Theorem | pm2.48 884 | Theorem *2.48 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 ∨ 𝜓) → (𝜑 ∨ ¬ 𝜓)) | ||
Theorem | pm2.49 885 | Theorem *2.49 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 ∨ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | ||
Theorem | norbi 886 | If neither of two propositions is true, then these propositions are equivalent. (Contributed by BJ, 26-Apr-2019.) |
⊢ (¬ (𝜑 ∨ 𝜓) → (𝜑 ↔ 𝜓)) | ||
Theorem | nbior 887 | If two propositions are not equivalent, then at least one is true. (Contributed by BJ, 19-Apr-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
⊢ (¬ (𝜑 ↔ 𝜓) → (𝜑 ∨ 𝜓)) | ||
Theorem | orel1 888 | Elimination of disjunction by denial of a disjunct. Theorem *2.55 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
⊢ (¬ 𝜑 → ((𝜑 ∨ 𝜓) → 𝜓)) | ||
Theorem | pm2.25 889 | Theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.) |
⊢ (𝜑 ∨ ((𝜑 ∨ 𝜓) → 𝜓)) | ||
Theorem | orel2 890 | Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) | ||
Theorem | pm2.67-2 891 | Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 ∨ 𝜒) → 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | pm2.67 892 | Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 ∨ 𝜓) → 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | curryax 893 | A non-intuitionistic positive statement, sometimes called a paradox of material implication. Sometimes called Curry's axiom. Similar to exmid 894 (obtained by substituting ⊥ for 𝜓) but positive. For another non-intuitionistic positive statement, see peirce 201. (Contributed by BJ, 4-Apr-2021.) |
⊢ (𝜑 ∨ (𝜑 → 𝜓)) | ||
Theorem | exmid 894 | Law of excluded middle, also called the principle of tertium non datur. Theorem *2.11 of [WhiteheadRussell] p. 101. It says that something is either true or not true; there are no in-between values of truth. This is an essential distinction of our classical logic and is not a theorem of intuitionistic logic. In intuitionistic logic, if this statement is true for some 𝜑, then 𝜑 is decidable. (Contributed by NM, 29-Dec-1992.) |
⊢ (𝜑 ∨ ¬ 𝜑) | ||
Theorem | exmidd 895 | Law of excluded middle in a context. (Contributed by Mario Carneiro, 9-Feb-2017.) |
⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) | ||
Theorem | pm2.1 896 | Theorem *2.1 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) |
⊢ (¬ 𝜑 ∨ 𝜑) | ||
Theorem | pm2.13 897 | Theorem *2.13 of [WhiteheadRussell] p. 101. (Contributed by NM, 3-Jan-2005.) |
⊢ (𝜑 ∨ ¬ ¬ ¬ 𝜑) | ||
Theorem | pm2.621 898 | Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → 𝜓) → ((𝜑 ∨ 𝜓) → 𝜓)) | ||
Theorem | pm2.62 899 | Theorem *2.62 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 13-Dec-2013.) |
⊢ ((𝜑 ∨ 𝜓) → ((𝜑 → 𝜓) → 𝜓)) | ||
Theorem | pm2.68 900 | Theorem *2.68 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) |
⊢ (((𝜑 → 𝜓) → 𝜓) → (𝜑 ∨ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |