MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.46 Structured version   Visualization version   GIF version

Theorem pm2.46 878
Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.46 (¬ (𝜑𝜓) → ¬ 𝜓)

Proof of Theorem pm2.46
StepHypRef Expression
1 olc 864 . 2 (𝜓 → (𝜑𝜓))
21con3i 157 1 (¬ (𝜑𝜓) → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-or 844
This theorem is referenced by:  pm2.48  880  pm2.49  881  rb-ax3  1748  eueq3  3706  soasym  5503  ltnsym  10732  tglineneq  26363  unbdqndv2lem1  33751  oexpreposd  39063  nnfoctbdjlem  42622
  Copyright terms: Public domain W3C validator