| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.46 | Structured version Visualization version GIF version | ||
| Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm2.46 | ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 869 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | 1 | con3i 154 | 1 ⊢ (¬ (𝜑 ∨ 𝜓) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: pm2.48 885 pm2.49 886 rb-ax3 1754 eueq3 3717 soasym 5625 ltnsym 11359 tglineneq 28652 expgt0b 32818 unbdqndv2lem1 36510 oexpreposd 42357 nnfoctbdjlem 46470 |
| Copyright terms: Public domain | W3C validator |