| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30396). After we define the constant
true ⊤ (df-tru 1544) and the constant false ⊥ (df-fal 1554), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1578), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1579), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1580), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1581).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1493), and ⊻ (df-xor 1513). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1501 cador 1609 nf4 1788 19.43 1883 nfor 1905 19.32v 1941 19.32 2236 sbor 2308 dfsb3 2494 neor 3020 r19.43 3100 r19.32v 3165 dfif2 4477 disjor 5073 soxp 8059 unxpwdom2 9474 cflim2 10151 cfpwsdom 10472 ltapr 10933 ltxrlt 11180 isprm4 16592 euclemma 16621 dvdszzq 16629 isdomn5 20623 islpi 23062 restntr 23095 alexsubALTlem2 23961 alexsubALTlem3 23962 2bornot2b 30439 disjorf 32554 funcnv5mpt 32645 cycpm2tr 33083 ballotlemodife 34506 orbi2iALT 35717 3orit 35748 dfon2lem5 35820 ecase13d 36346 elicc3 36350 nn0prpw 36356 onsucuni3 37400 orfa 38121 cnf1dd 38129 tsim1 38169 ineleq 38381 aks4d1p7 42115 safesnsupfilb 43450 ifpidg 43523 ifpim123g 43532 ifpororb 43537 ifpor123g 43540 dfxor4 43798 df3or2 43800 frege83 43978 dffrege99 43994 frege131 44026 frege133 44028 pm10.541 44399 xrssre 45386 iundjiun 46497 r19.32 47128 |
| Copyright terms: Public domain | W3C validator |