![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version |
Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30453). After we define the constant
true ⊤ (df-tru 1540) and the constant false ⊥ (df-fal 1550), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1574), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1575), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1576), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1577).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1489), and ⊻ (df-xor 1509). (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wo 846 | . 2 wff (𝜑 ∨ 𝜓) |
4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: pm4.64 848 pm2.53 850 pm2.54 851 imor 852 ori 860 orri 861 ord 863 orbi2d 914 orimdi 929 orbidi 953 pm5.6 1002 ordi 1006 pm5.17 1012 nanbi 1497 cador 1605 nf4 1785 19.43 1881 nfor 1903 19.32v 1939 19.32 2234 sbor 2311 dfsb3 2502 neor 3040 r19.43 3128 r19.32v 3198 dfif2 4550 disjor 5148 soxp 8170 unxpwdom2 9657 cflim2 10332 cfpwsdom 10653 ltapr 11114 ltxrlt 11360 isprm4 16731 euclemma 16760 dvdszzq 16768 isdomn5 20732 islpi 23178 restntr 23211 alexsubALTlem2 24077 alexsubALTlem3 24078 2bornot2b 30496 disjorf 32601 funcnv5mpt 32686 cycpm2tr 33112 ballotlemodife 34462 orbi2iALT 35653 3orit 35678 dfon2lem5 35751 ecase13d 36279 elicc3 36283 nn0prpw 36289 onsucuni3 37333 orfa 38042 cnf1dd 38050 tsim1 38090 ineleq 38310 aks4d1p7 42040 safesnsupfilb 43380 ifpidg 43453 ifpim123g 43462 ifpororb 43467 ifpor123g 43470 dfxor4 43728 df3or2 43730 frege83 43908 dffrege99 43924 frege131 43956 frege133 43958 pm10.541 44336 xrssre 45263 elprn2 45555 iundjiun 46381 r19.32 47013 |
Copyright terms: Public domain | W3C validator |