![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version |
Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30449). After we define the constant
true ⊤ (df-tru 1539) and the constant false ⊥ (df-fal 1549), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1573), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1574), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1575), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1576).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1488), and ⊻ (df-xor 1508). (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1496 cador 1604 nf4 1783 19.43 1879 nfor 1901 19.32v 1937 19.32 2230 sbor 2305 dfsb3 2496 neor 3031 r19.43 3119 r19.32v 3189 dfif2 4532 disjor 5129 soxp 8152 unxpwdom2 9625 cflim2 10300 cfpwsdom 10621 ltapr 11082 ltxrlt 11328 isprm4 16717 euclemma 16746 dvdszzq 16754 isdomn5 20726 islpi 23172 restntr 23205 alexsubALTlem2 24071 alexsubALTlem3 24072 2bornot2b 30492 disjorf 32598 funcnv5mpt 32684 cycpm2tr 33121 ballotlemodife 34478 orbi2iALT 35669 3orit 35695 dfon2lem5 35768 ecase13d 36295 elicc3 36299 nn0prpw 36305 onsucuni3 37349 orfa 38068 cnf1dd 38076 tsim1 38116 ineleq 38335 aks4d1p7 42064 safesnsupfilb 43407 ifpidg 43480 ifpim123g 43489 ifpororb 43494 ifpor123g 43497 dfxor4 43755 df3or2 43757 frege83 43935 dffrege99 43951 frege131 43983 frege133 43985 pm10.541 44362 xrssre 45297 elprn2 45589 iundjiun 46415 r19.32 47047 |
Copyright terms: Public domain | W3C validator |