Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version |
Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 28661). After we define the constant
true ⊤ (df-tru 1546) and the constant false ⊥ (df-fal 1556), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1580), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1581), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1582), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1583).
Contrast with ∧ (df-an 400), → (wi 4), ⊼ (df-nan 1488), and ⊻ (df-xor 1508). (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
6 | 3, 5 | wb 209 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 unitreslOLD 878 orbi2d 916 orimdi 931 orbidi 953 pm5.6 1002 ordi 1006 pm5.17 1012 nanbi 1496 cador 1615 nf4 1795 19.43 1890 nfor 1912 19.32v 1948 19.32 2233 sbor 2310 dfsb3 2499 neor 3036 r19.32v 3269 r19.43 3279 dfif2 4458 disjor 5050 soxp 7938 unxpwdom2 9252 cflim2 9925 cfpwsdom 10246 ltapr 10707 ltxrlt 10951 isprm4 16292 euclemma 16321 islpi 22183 restntr 22216 alexsubALTlem2 23082 alexsubALTlem3 23083 2bornot2b 28704 disjorf 30794 funcnv5mpt 30882 dvdszzq 31006 cycpm2tr 31263 ballotlemodife 32339 3orit 33535 dfon2lem5 33644 ecase13d 34404 elicc3 34408 nn0prpw 34414 onsucuni3 35444 orfa 36146 cnf1dd 36154 tsim1 36194 ineleq 36392 aks4d1p7 39997 isdomn5 40071 ifpidg 40968 ifpim123g 40977 ifpororb 40982 ifpor123g 40985 dfxor4 41236 df3or2 41238 frege83 41416 dffrege99 41432 frege131 41464 frege133 41466 pm10.541 41847 xrssre 42750 elprn2 43038 iundjiun 43861 r19.32 44450 |
Copyright terms: Public domain | W3C validator |