| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30357). After we define the constant
true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1577), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1578), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1579), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1580).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1492), and ⊻ (df-xor 1512). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1500 cador 1608 nf4 1787 19.43 1882 nfor 1904 19.32v 1940 19.32 2234 sbor 2306 dfsb3 2493 neor 3018 r19.43 3102 r19.32v 3171 dfif2 4493 disjor 5092 soxp 8111 unxpwdom2 9548 cflim2 10223 cfpwsdom 10544 ltapr 11005 ltxrlt 11251 isprm4 16661 euclemma 16690 dvdszzq 16698 isdomn5 20626 islpi 23043 restntr 23076 alexsubALTlem2 23942 alexsubALTlem3 23943 2bornot2b 30400 disjorf 32515 funcnv5mpt 32599 cycpm2tr 33083 ballotlemodife 34496 orbi2iALT 35679 3orit 35710 dfon2lem5 35782 ecase13d 36308 elicc3 36312 nn0prpw 36318 onsucuni3 37362 orfa 38083 cnf1dd 38091 tsim1 38131 ineleq 38343 aks4d1p7 42078 safesnsupfilb 43414 ifpidg 43487 ifpim123g 43496 ifpororb 43501 ifpor123g 43504 dfxor4 43762 df3or2 43764 frege83 43942 dffrege99 43958 frege131 43990 frege133 43992 pm10.541 44363 xrssre 45351 elprn2 45639 iundjiun 46465 r19.32 47103 |
| Copyright terms: Public domain | W3C validator |