| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30403). After we define the constant
true ⊤ (df-tru 1544) and the constant false ⊥ (df-fal 1554), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1578), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1579), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1580), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1581).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1493), and ⊻ (df-xor 1513). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1501 cador 1609 nf4 1788 19.43 1883 nfor 1905 19.32v 1941 19.32 2238 sbor 2310 dfsb3 2496 neor 3021 r19.43 3101 r19.32v 3166 dfif2 4476 disjor 5075 soxp 8065 unxpwdom2 9481 cflim2 10161 cfpwsdom 10482 ltapr 10943 ltxrlt 11190 isprm4 16597 euclemma 16626 dvdszzq 16634 isdomn5 20627 islpi 23065 restntr 23098 alexsubALTlem2 23964 alexsubALTlem3 23965 2bornot2b 30446 disjorf 32561 funcnv5mpt 32652 cycpm2tr 33095 ballotlemodife 34532 orbi2iALT 35750 3orit 35781 dfon2lem5 35850 ecase13d 36378 elicc3 36382 nn0prpw 36388 onsucuni3 37432 orfa 38142 cnf1dd 38150 tsim1 38190 ineleq 38406 aks4d1p7 42196 safesnsupfilb 43535 ifpidg 43608 ifpim123g 43617 ifpororb 43622 ifpor123g 43625 dfxor4 43883 df3or2 43885 frege83 44063 dffrege99 44079 frege131 44111 frege133 44113 pm10.541 44484 xrssre 45471 iundjiun 46582 r19.32 47222 |
| Copyright terms: Public domain | W3C validator |