| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30357). After we define the constant
true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1577), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1578), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1579), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1580).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1492), and ⊻ (df-xor 1512). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1500 cador 1608 nf4 1787 19.43 1882 nfor 1904 19.32v 1940 19.32 2234 sbor 2306 dfsb3 2493 neor 3019 r19.43 3103 r19.32v 3172 dfif2 4498 disjor 5097 soxp 8117 unxpwdom2 9559 cflim2 10234 cfpwsdom 10555 ltapr 11016 ltxrlt 11262 isprm4 16660 euclemma 16689 dvdszzq 16697 isdomn5 20625 islpi 23042 restntr 23075 alexsubALTlem2 23941 alexsubALTlem3 23942 2bornot2b 30400 disjorf 32515 funcnv5mpt 32600 cycpm2tr 33084 ballotlemodife 34497 orbi2iALT 35674 3orit 35700 dfon2lem5 35772 ecase13d 36298 elicc3 36302 nn0prpw 36308 onsucuni3 37352 orfa 38073 cnf1dd 38081 tsim1 38121 ineleq 38339 aks4d1p7 42063 safesnsupfilb 43379 ifpidg 43452 ifpim123g 43461 ifpororb 43466 ifpor123g 43469 dfxor4 43727 df3or2 43729 frege83 43907 dffrege99 43923 frege131 43955 frege133 43957 pm10.541 44328 xrssre 45317 elprn2 45605 iundjiun 46431 r19.32 47069 |
| Copyright terms: Public domain | W3C validator |