![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version |
Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 29674). After we define the constant
true ⊤ (df-tru 1545) and the constant false ⊥ (df-fal 1555), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1579), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1580), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1581), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1582).
Contrast with ∧ (df-an 398), → (wi 4), ⊼ (df-nan 1491), and ⊻ (df-xor 1511). (Contributed by NM, 27-Dec-1992.) |
Ref | Expression |
---|---|
df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 1, 2 | wo 846 | . 2 wff (𝜑 ∨ 𝜓) |
4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
6 | 3, 5 | wb 205 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
This definition is referenced by: pm4.64 848 pm2.53 850 pm2.54 851 imor 852 ori 860 orri 861 ord 863 unitreslOLD 877 orbi2d 915 orimdi 930 orbidi 952 pm5.6 1001 ordi 1005 pm5.17 1011 nanbi 1499 cador 1610 nf4 1790 19.43 1886 nfor 1908 19.32v 1944 19.32 2227 sbor 2304 dfsb3 2494 neor 3035 r19.43 3123 r19.32v 3192 dfif2 4531 disjor 5129 soxp 8115 unxpwdom2 9583 cflim2 10258 cfpwsdom 10579 ltapr 11040 ltxrlt 11284 isprm4 16621 euclemma 16650 isdomn5 20917 islpi 22653 restntr 22686 alexsubALTlem2 23552 alexsubALTlem3 23553 2bornot2b 29717 disjorf 31810 funcnv5mpt 31893 dvdszzq 32021 cycpm2tr 32278 ballotlemodife 33496 3orit 34685 dfon2lem5 34759 ecase13d 35198 elicc3 35202 nn0prpw 35208 onsucuni3 36248 orfa 36950 cnf1dd 36958 tsim1 36998 ineleq 37223 aks4d1p7 40948 safesnsupfilb 42169 ifpidg 42242 ifpim123g 42251 ifpororb 42256 ifpor123g 42259 dfxor4 42517 df3or2 42519 frege83 42697 dffrege99 42713 frege131 42745 frege133 42747 pm10.541 43126 xrssre 44058 elprn2 44350 iundjiun 45176 r19.32 45806 |
Copyright terms: Public domain | W3C validator |