| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or").  Definition of [Margaris] p. 49.  When
     the left operand, right operand, or both are true, the result is true;
     when both sides are false, the result is false.  For example, it is true
     that (2 = 3 ∨ 4 = 4) (ex-or 30383).  After we define the constant
     true ⊤ (df-tru 1542) and the constant false ⊥ (df-fal 1552), we
     will be able to prove these truth table values:
     ((⊤ ∨ ⊤) ↔ ⊤) (truortru 1576), ((⊤ ∨ ⊥)
↔ ⊤)
     (truorfal 1577), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1578), and
     ((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1579).
 Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1491), and ⊻ (df-xor 1511). (Contributed by NM, 27-Dec-1992.)  | 
| Ref | Expression | 
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) | 
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 | 
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) | 
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1499 cador 1607 nf4 1786 19.43 1881 nfor 1903 19.32v 1939 19.32 2232 sbor 2306 dfsb3 2497 neor 3023 r19.43 3109 r19.32v 3179 dfif2 4509 disjor 5107 soxp 8137 unxpwdom2 9611 cflim2 10286 cfpwsdom 10607 ltapr 11068 ltxrlt 11314 isprm4 16704 euclemma 16733 dvdszzq 16741 isdomn5 20679 islpi 23118 restntr 23151 alexsubALTlem2 24017 alexsubALTlem3 24018 2bornot2b 30426 disjorf 32535 funcnv5mpt 32621 cycpm2tr 33081 ballotlemodife 34437 orbi2iALT 35627 3orit 35653 dfon2lem5 35725 ecase13d 36251 elicc3 36255 nn0prpw 36261 onsucuni3 37305 orfa 38026 cnf1dd 38034 tsim1 38074 ineleq 38292 aks4d1p7 42021 safesnsupfilb 43372 ifpidg 43445 ifpim123g 43454 ifpororb 43459 ifpor123g 43462 dfxor4 43720 df3or2 43722 frege83 43900 dffrege99 43916 frege131 43948 frege133 43950 pm10.541 44327 xrssre 45300 elprn2 45590 iundjiun 46416 r19.32 47052 | 
| Copyright terms: Public domain | W3C validator |