| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30350). After we define the constant
true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1577), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1578), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1579), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1580).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1492), and ⊻ (df-xor 1512). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1500 cador 1608 nf4 1787 19.43 1882 nfor 1904 19.32v 1940 19.32 2234 sbor 2306 dfsb3 2492 neor 3017 r19.43 3101 r19.32v 3170 dfif2 4490 disjor 5089 soxp 8108 unxpwdom2 9541 cflim2 10216 cfpwsdom 10537 ltapr 10998 ltxrlt 11244 isprm4 16654 euclemma 16683 dvdszzq 16691 isdomn5 20619 islpi 23036 restntr 23069 alexsubALTlem2 23935 alexsubALTlem3 23936 2bornot2b 30393 disjorf 32508 funcnv5mpt 32592 cycpm2tr 33076 ballotlemodife 34489 orbi2iALT 35672 3orit 35703 dfon2lem5 35775 ecase13d 36301 elicc3 36305 nn0prpw 36311 onsucuni3 37355 orfa 38076 cnf1dd 38084 tsim1 38124 ineleq 38336 aks4d1p7 42071 safesnsupfilb 43407 ifpidg 43480 ifpim123g 43489 ifpororb 43494 ifpor123g 43497 dfxor4 43755 df3or2 43757 frege83 43935 dffrege99 43951 frege131 43983 frege133 43985 pm10.541 44356 xrssre 45344 elprn2 45632 iundjiun 46458 r19.32 47099 |
| Copyright terms: Public domain | W3C validator |