| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-or | Structured version Visualization version GIF version | ||
| Description: Define disjunction
(logical "or"). Definition of [Margaris] p. 49. When
the left operand, right operand, or both are true, the result is true;
when both sides are false, the result is false. For example, it is true
that (2 = 3 ∨ 4 = 4) (ex-or 30383). After we define the constant
true ⊤ (df-tru 1543) and the constant false ⊥ (df-fal 1553), we
will be able to prove these truth table values:
((⊤ ∨ ⊤) ↔ ⊤) (truortru 1577), ((⊤ ∨ ⊥)
↔ ⊤)
(truorfal 1578), ((⊥ ∨ ⊤)
↔ ⊤) (falortru 1579), and
((⊥ ∨ ⊥) ↔ ⊥) (falorfal 1580).
Contrast with ∧ (df-an 396), → (wi 4), ⊼ (df-nan 1492), and ⊻ (df-xor 1512). (Contributed by NM, 27-Dec-1992.) |
| Ref | Expression |
|---|---|
| df-or | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 1, 2 | wo 847 | . 2 wff (𝜑 ∨ 𝜓) |
| 4 | 1 | wn 3 | . . 3 wff ¬ 𝜑 |
| 5 | 4, 2 | wi 4 | . 2 wff (¬ 𝜑 → 𝜓) |
| 6 | 3, 5 | wb 206 | 1 wff ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: pm4.64 849 pm2.53 851 pm2.54 852 imor 853 ori 861 orri 862 ord 864 orbi2d 915 orimdi 930 orbidi 954 pm5.6 1003 ordi 1007 pm5.17 1013 nanbi 1500 cador 1608 nf4 1787 19.43 1882 nfor 1904 19.32v 1940 19.32 2234 sbor 2306 dfsb3 2492 neor 3017 r19.43 3097 r19.32v 3162 dfif2 4480 disjor 5077 soxp 8069 unxpwdom2 9499 cflim2 10176 cfpwsdom 10497 ltapr 10958 ltxrlt 11204 isprm4 16613 euclemma 16642 dvdszzq 16650 isdomn5 20613 islpi 23052 restntr 23085 alexsubALTlem2 23951 alexsubALTlem3 23952 2bornot2b 30426 disjorf 32541 funcnv5mpt 32625 cycpm2tr 33074 ballotlemodife 34465 orbi2iALT 35657 3orit 35688 dfon2lem5 35760 ecase13d 36286 elicc3 36290 nn0prpw 36296 onsucuni3 37340 orfa 38061 cnf1dd 38069 tsim1 38109 ineleq 38321 aks4d1p7 42056 safesnsupfilb 43391 ifpidg 43464 ifpim123g 43473 ifpororb 43478 ifpor123g 43481 dfxor4 43739 df3or2 43741 frege83 43919 dffrege99 43935 frege131 43967 frege133 43969 pm10.541 44340 xrssre 45328 elprn2 45616 iundjiun 46442 r19.32 47083 |
| Copyright terms: Public domain | W3C validator |