MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.521g Structured version   Visualization version   GIF version

Theorem pm2.521g 174
Description: A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107. (Contributed by BJ, 28-Oct-2023.)
Assertion
Ref Expression
pm2.521g (¬ (𝜑𝜓) → (𝜓𝜒))

Proof of Theorem pm2.521g
StepHypRef Expression
1 conax1 170 . 2 (¬ (𝜑𝜓) → ¬ 𝜓)
21pm2.21d 121 1 (¬ (𝜑𝜓) → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.521  176  pm5.14  944
  Copyright terms: Public domain W3C validator