Proof of Theorem rp-fakeimass
Step | Hyp | Ref
| Expression |
1 | | conax1 170 |
. . . . . . 7
⊢ (¬
(𝜑 → 𝜓) → ¬ 𝜓) |
2 | 1 | pm2.21d 121 |
. . . . . 6
⊢ (¬
(𝜑 → 𝜓) → (𝜓 → 𝜒)) |
3 | 2 | a1d 25 |
. . . . 5
⊢ (¬
(𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) |
4 | | ax-1 6 |
. . . . . 6
⊢ (𝜒 → (𝜓 → 𝜒)) |
5 | 4 | a1d 25 |
. . . . 5
⊢ (𝜒 → (𝜑 → (𝜓 → 𝜒))) |
6 | 3, 5 | ja 186 |
. . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
7 | | ax-2 7 |
. . . . 5
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
8 | 7 | com3r 87 |
. . . 4
⊢ (𝜑 → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → 𝜒))) |
9 | 6, 8 | impbid2 225 |
. . 3
⊢ (𝜑 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
10 | | ax-1 6 |
. . . 4
⊢ (𝜒 → ((𝜑 → 𝜓) → 𝜒)) |
11 | 10, 5 | 2thd 264 |
. . 3
⊢ (𝜒 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
12 | 9, 11 | jaoi 854 |
. 2
⊢ ((𝜑 ∨ 𝜒) → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |
13 | | jarl 125 |
. . . . 5
⊢ (((𝜑 → 𝜓) → 𝜒) → (¬ 𝜑 → 𝜒)) |
14 | 13 | orrd 860 |
. . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 ∨ 𝜒)) |
15 | 14 | a1d 25 |
. . 3
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) |
16 | | simplim 167 |
. . . . 5
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → 𝜑) |
17 | 16 | orcd 870 |
. . . 4
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒)) |
18 | 17 | a1i 11 |
. . 3
⊢ (¬
((𝜑 → 𝜓) → 𝜒) → (¬ (𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) |
19 | 15, 18 | bija 382 |
. 2
⊢ ((((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) → (𝜑 ∨ 𝜒)) |
20 | 12, 19 | impbii 208 |
1
⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |