Proof of Theorem rp-fakeimass
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | pm2.521g 174 | . . . . . 6
⊢ (¬
(𝜑 → 𝜓) → (𝜓 → 𝜒)) | 
| 2 | 1 | a1d 25 | . . . . 5
⊢ (¬
(𝜑 → 𝜓) → (𝜑 → (𝜓 → 𝜒))) | 
| 3 |  | ax-1 6 | . . . . . 6
⊢ (𝜒 → (𝜓 → 𝜒)) | 
| 4 | 3 | a1d 25 | . . . . 5
⊢ (𝜒 → (𝜑 → (𝜓 → 𝜒))) | 
| 5 | 2, 4 | ja 186 | . . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | 
| 6 |  | ax-2 7 | . . . . 5
⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | 
| 7 | 6 | com3r 87 | . . . 4
⊢ (𝜑 → ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → 𝜒))) | 
| 8 | 5, 7 | impbid2 226 | . . 3
⊢ (𝜑 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | 
| 9 |  | ax-1 6 | . . . 4
⊢ (𝜒 → ((𝜑 → 𝜓) → 𝜒)) | 
| 10 | 9, 4 | 2thd 265 | . . 3
⊢ (𝜒 → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | 
| 11 | 8, 10 | jaoi 857 | . 2
⊢ ((𝜑 ∨ 𝜒) → (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) | 
| 12 |  | jarl 125 | . . . . 5
⊢ (((𝜑 → 𝜓) → 𝜒) → (¬ 𝜑 → 𝜒)) | 
| 13 | 12 | orrd 863 | . . . 4
⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜑 ∨ 𝜒)) | 
| 14 | 13 | a1d 25 | . . 3
⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) | 
| 15 |  | simplim 167 | . . . . 5
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → 𝜑) | 
| 16 | 15 | orcd 873 | . . . 4
⊢ (¬
(𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒)) | 
| 17 | 16 | a1i 11 | . . 3
⊢ (¬
((𝜑 → 𝜓) → 𝜒) → (¬ (𝜑 → (𝜓 → 𝜒)) → (𝜑 ∨ 𝜒))) | 
| 18 | 14, 17 | bija 380 | . 2
⊢ ((((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) → (𝜑 ∨ 𝜒)) | 
| 19 | 11, 18 | impbii 209 | 1
⊢ ((𝜑 ∨ 𝜒) ↔ (((𝜑 → 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒)))) |