MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.521g2 Structured version   Visualization version   GIF version

Theorem pm2.521g2 175
Description: A general instance of Theorem *2.521 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 8-Oct-2012.)
Assertion
Ref Expression
pm2.521g2 (¬ (𝜑𝜓) → (𝜒𝜑))

Proof of Theorem pm2.521g2
StepHypRef Expression
1 simplim 167 . 2 (¬ (𝜑𝜓) → 𝜑)
21a1d 25 1 (¬ (𝜑𝜓) → (𝜒𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator