Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm2.65ni Structured version   Visualization version   GIF version

Theorem pm2.65ni 42481
Description: Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
pm2.65ni.1 𝜑𝜓)
pm2.65ni.2 𝜑 → ¬ 𝜓)
Assertion
Ref Expression
pm2.65ni 𝜑

Proof of Theorem pm2.65ni
StepHypRef Expression
1 pm2.65ni.1 . . 3 𝜑𝜓)
2 pm2.65ni.2 . . 3 𝜑 → ¬ 𝜓)
31, 2pm2.65i 193 . 2 ¬ ¬ 𝜑
43notnotri 131 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator