MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssfi Structured version   Visualization version   GIF version

Theorem pwssfi 9091
Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwssfi (𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))

Proof of Theorem pwssfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4558 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
2 ssfi 9087 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
31, 2sylan2 593 . . . 4 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin)
43ralrimiva 3121 . . 3 (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
5 dfss3 3924 . . 3 (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
64, 5sylibr 234 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)
7 pwidg 4571 . . . 4 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
85biimpi 216 . . . 4 (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
9 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
109rspcva 3575 . . . 4 ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin)
117, 8, 10syl2an 596 . . 3 ((𝐴𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
1211ex 412 . 2 (𝐴𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin))
136, 12impbid2 226 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  wral 3044  wss 3903  𝒫 cpw 4551  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-en 8873  df-fin 8876
This theorem is referenced by:  exsslsb  33563
  Copyright terms: Public domain W3C validator