| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwssfi | Structured version Visualization version GIF version | ||
| Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| pwssfi | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi 4570 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | ssfi 9137 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
| 3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
| 4 | 3 | ralrimiva 3125 | . . 3 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
| 5 | dfss3 3935 | . . 3 ⊢ (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin) |
| 7 | pwidg 4583 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | |
| 8 | 5 | biimpi 216 | . . . 4 ⊢ (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
| 9 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | |
| 10 | 9 | rspcva 3586 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin) |
| 11 | 7, 8, 10 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
| 12 | 11 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin)) |
| 13 | 6, 12 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-fin 8922 |
| This theorem is referenced by: exsslsb 33592 |
| Copyright terms: Public domain | W3C validator |