![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwssfi | Structured version Visualization version GIF version |
Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwssfi | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
2 | elpwi 4469 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐴) |
4 | ssfi 8591 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
5 | 1, 3, 4 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
6 | 5 | ralrimiva 3151 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
7 | dfss3 3884 | . . . 4 ⊢ (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) | |
8 | 6, 7 | sylibr 235 | . . 3 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)) |
10 | pwidg 4474 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ 𝒫 𝐴) |
12 | 7 | biimpi 217 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
14 | eleq1 2872 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | |
15 | 14 | rspcva 3559 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin) |
16 | 11, 13, 15 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
17 | 16 | ex 413 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin)) |
18 | 9, 17 | impbid 213 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∈ wcel 2083 ∀wral 3107 ⊆ wss 3865 𝒫 cpw 4459 Fincfn 8364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-om 7444 df-er 8146 df-en 8365 df-fin 8368 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |