![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwssfi | Structured version Visualization version GIF version |
Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwssfi | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
2 | elpwi 4629 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐴) |
4 | ssfi 9240 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
5 | 1, 3, 4 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
6 | 5 | ralrimiva 3152 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
7 | dfss3 3997 | . . . 4 ⊢ (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) | |
8 | 6, 7 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)) |
10 | pwidg 4642 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ 𝒫 𝐴) |
12 | 7 | biimpi 216 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
14 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | |
15 | 14 | rspcva 3633 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin) |
16 | 11, 13, 15 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin)) |
18 | 9, 17 | impbid 212 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |