Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwssfi | Structured version Visualization version GIF version |
Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwssfi | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
2 | elpwi 4542 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
3 | 2 | adantl 482 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐴) |
4 | ssfi 8956 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
5 | 1, 3, 4 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
6 | 5 | ralrimiva 3103 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
7 | dfss3 3909 | . . . 4 ⊢ (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)) |
10 | pwidg 4555 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ 𝒫 𝐴) |
12 | 7 | biimpi 215 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
14 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | |
15 | 14 | rspcva 3559 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin) |
16 | 11, 13, 15 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
17 | 16 | ex 413 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin)) |
18 | 9, 17 | impbid 211 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 𝒫 cpw 4533 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |