Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssfi Structured version   Visualization version   GIF version

Theorem pwssfi 41694
 Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
pwssfi (𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))

Proof of Theorem pwssfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin)
2 elpwi 4506 . . . . . . 7 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
32adantl 485 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥𝐴)
4 ssfi 8724 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
51, 3, 4syl2anc 587 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin)
65ralrimiva 3149 . . . 4 (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
7 dfss3 3903 . . . 4 (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
86, 7sylibr 237 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)
98a1i 11 . 2 (𝐴𝑉 → (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin))
10 pwidg 4519 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
1110adantr 484 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ 𝒫 𝐴)
127biimpi 219 . . . . 5 (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
1312adantl 485 . . . 4 ((𝐴𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin)
14 eleq1 2877 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin))
1514rspcva 3569 . . . 4 ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin)
1611, 13, 15syl2anc 587 . . 3 ((𝐴𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin)
1716ex 416 . 2 (𝐴𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin))
189, 17impbid 215 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111  ∀wral 3106   ⊆ wss 3881  𝒫 cpw 4497  Fincfn 8494 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-om 7563  df-er 8274  df-en 8495  df-fin 8498 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator