![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwssfi | Structured version Visualization version GIF version |
Description: Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
pwssfi | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
2 | elpwi 4609 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
3 | 2 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ⊆ 𝐴) |
4 | ssfi 9179 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
5 | 1, 3, 4 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ Fin) |
6 | 5 | ralrimiva 3145 | . . . 4 ⊢ (𝐴 ∈ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
7 | dfss3 3970 | . . . 4 ⊢ (𝒫 𝐴 ⊆ Fin ↔ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) | |
8 | 6, 7 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin) |
9 | 8 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin → 𝒫 𝐴 ⊆ Fin)) |
10 | pwidg 4622 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ 𝒫 𝐴) |
12 | 7 | biimpi 215 | . . . . 5 ⊢ (𝒫 𝐴 ⊆ Fin → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) |
14 | eleq1 2820 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ Fin ↔ 𝐴 ∈ Fin)) | |
15 | 14 | rspcva 3610 | . . . 4 ⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) → 𝐴 ∈ Fin) |
16 | 11, 13, 15 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝒫 𝐴 ⊆ Fin) → 𝐴 ∈ Fin) |
17 | 16 | ex 412 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊆ Fin → 𝐴 ∈ Fin)) |
18 | 9, 17 | impbid 211 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ∀wral 3060 ⊆ wss 3948 𝒫 cpw 4602 Fincfn 8945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7860 df-1o 8472 df-en 8946 df-fin 8949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |