| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5471 canth 7359 sdom0OLD 9123 canthwdom 9593 cardprclem 9993 ominf4 10326 canthp1lem2 10667 pwfseqlem4 10676 pwxpndom2 10679 lbioo 13393 ubioo 13394 fzp1disj 13600 fzonel 13690 fzouzdisj 13712 hashbclem 14470 harmonic 15875 eirrlem 16222 ruclem13 16260 prmreclem6 16941 4sqlem17 16981 vdwlem12 17012 vdwnnlem3 17017 mreexmrid 17655 psgnunilem3 19477 efgredlemb 19727 efgredlem 19728 00lss 20898 alexsublem 23982 ptcmplem4 23993 nmoleub2lem3 25066 dvferm1lem 25940 dvferm2lem 25942 plyeq0lem 26167 logno1 26597 lgsval2lem 27270 pntpbnd2 27550 ubico 32752 bnj1523 35102 antnest 35711 sn-inelr 42510 pm2.65ni 45070 lbioc 45542 salgencntex 46372 |
| Copyright terms: Public domain | W3C validator |