Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 194 mto 196 mt2 199 0nelop 5440 canth 7290 sdom0OLD 8974 canthwdom 9436 cardprclem 9836 ominf4 10169 canthp1lem2 10510 pwfseqlem4 10519 pwxpndom2 10522 lbioo 13211 ubioo 13212 fzp1disj 13416 fzonel 13502 fzouzdisj 13524 hashbclem 14264 harmonic 15670 eirrlem 16012 ruclem13 16050 prmreclem6 16719 4sqlem17 16759 vdwlem12 16790 vdwnnlem3 16795 mreexmrid 17449 psgnunilem3 19200 efgredlemb 19447 efgredlem 19448 00lss 20309 alexsublem 23301 ptcmplem4 23312 nmoleub2lem3 24384 dvferm1lem 25254 dvferm2lem 25256 plyeq0lem 25477 logno1 25897 lgsval2lem 26561 pntpbnd2 26841 ubico 31383 bnj1523 33350 sn-inelr 40695 pm2.65ni 42912 lbioc 43387 salgencntex 44218 |
Copyright terms: Public domain | W3C validator |