Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 194 mto 196 mt2 199 0nelop 5404 canth 7209 sdom0 8845 canthwdom 9268 cardprclem 9668 ominf4 9999 canthp1lem2 10340 pwfseqlem4 10349 pwxpndom2 10352 lbioo 13039 ubioo 13040 fzp1disj 13244 fzonel 13329 fzouzdisj 13351 hashbclem 14092 harmonic 15499 eirrlem 15841 ruclem13 15879 prmreclem6 16550 4sqlem17 16590 vdwlem12 16621 vdwnnlem3 16626 mreexmrid 17269 psgnunilem3 19019 efgredlemb 19267 efgredlem 19268 00lss 20118 alexsublem 23103 ptcmplem4 23114 nmoleub2lem3 24184 dvferm1lem 25053 dvferm2lem 25055 plyeq0lem 25276 logno1 25696 lgsval2lem 26360 pntpbnd2 26640 ubico 30998 bnj1523 32951 sn-inelr 40356 pm2.65ni 42481 lbioc 42941 salgencntex 43772 |
Copyright terms: Public domain | W3C validator |