| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5443 canth 7307 canthwdom 9490 cardprclem 9894 ominf4 10225 canthp1lem2 10566 pwfseqlem4 10575 pwxpndom2 10578 lbioo 13297 ubioo 13298 fzp1disj 13504 fzonel 13594 fzouzdisj 13616 hashbclem 14377 harmonic 15784 eirrlem 16131 ruclem13 16169 prmreclem6 16851 4sqlem17 16891 vdwlem12 16922 vdwnnlem3 16927 mreexmrid 17567 psgnunilem3 19393 efgredlemb 19643 efgredlem 19644 00lss 20862 alexsublem 23947 ptcmplem4 23958 nmoleub2lem3 25031 dvferm1lem 25904 dvferm2lem 25906 plyeq0lem 26131 logno1 26561 lgsval2lem 27234 pntpbnd2 27514 ubico 32731 bnj1523 35037 antnest 35661 pm2.65ni 45024 lbioc 45495 salgencntex 46325 |
| Copyright terms: Public domain | W3C validator |