| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5501 canth 7385 sdom0OLD 9149 canthwdom 9619 cardprclem 10019 ominf4 10352 canthp1lem2 10693 pwfseqlem4 10702 pwxpndom2 10705 lbioo 13418 ubioo 13419 fzp1disj 13623 fzonel 13713 fzouzdisj 13735 hashbclem 14491 harmonic 15895 eirrlem 16240 ruclem13 16278 prmreclem6 16959 4sqlem17 16999 vdwlem12 17030 vdwnnlem3 17035 mreexmrid 17686 psgnunilem3 19514 efgredlemb 19764 efgredlem 19765 00lss 20939 alexsublem 24052 ptcmplem4 24063 nmoleub2lem3 25148 dvferm1lem 26022 dvferm2lem 26024 plyeq0lem 26249 logno1 26678 lgsval2lem 27351 pntpbnd2 27631 ubico 32777 bnj1523 35085 antnest 35694 sn-inelr 42497 pm2.65ni 45051 lbioc 45526 salgencntex 46358 |
| Copyright terms: Public domain | W3C validator |