| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5439 canth 7306 canthwdom 9472 cardprclem 9879 ominf4 10210 canthp1lem2 10551 pwfseqlem4 10560 pwxpndom2 10563 lbioo 13278 ubioo 13279 fzp1disj 13485 fzonel 13575 fzouzdisj 13597 hashbclem 14361 harmonic 15768 eirrlem 16115 ruclem13 16153 prmreclem6 16835 4sqlem17 16875 vdwlem12 16906 vdwnnlem3 16911 mreexmrid 17551 psgnunilem3 19410 efgredlemb 19660 efgredlem 19661 00lss 20876 alexsublem 23960 ptcmplem4 23971 nmoleub2lem3 25043 dvferm1lem 25916 dvferm2lem 25918 plyeq0lem 26143 logno1 26573 lgsval2lem 27246 pntpbnd2 27526 ubico 32762 bnj1523 35104 antnest 35754 pm2.65ni 45167 lbioc 45637 salgencntex 46465 |
| Copyright terms: Public domain | W3C validator |