![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5515 canth 7401 sdom0OLD 9175 canthwdom 9648 cardprclem 10048 ominf4 10381 canthp1lem2 10722 pwfseqlem4 10731 pwxpndom2 10734 lbioo 13438 ubioo 13439 fzp1disj 13643 fzonel 13730 fzouzdisj 13752 hashbclem 14501 harmonic 15907 eirrlem 16252 ruclem13 16290 prmreclem6 16968 4sqlem17 17008 vdwlem12 17039 vdwnnlem3 17044 mreexmrid 17701 psgnunilem3 19538 efgredlemb 19788 efgredlem 19789 00lss 20962 alexsublem 24073 ptcmplem4 24084 nmoleub2lem3 25167 dvferm1lem 26042 dvferm2lem 26044 plyeq0lem 26269 logno1 26696 lgsval2lem 27369 pntpbnd2 27649 ubico 32780 bnj1523 35047 sn-inelr 42443 pm2.65ni 44946 lbioc 45431 salgencntex 46264 |
Copyright terms: Public domain | W3C validator |