| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5459 canth 7344 canthwdom 9539 cardprclem 9939 ominf4 10272 canthp1lem2 10613 pwfseqlem4 10622 pwxpndom2 10625 lbioo 13344 ubioo 13345 fzp1disj 13551 fzonel 13641 fzouzdisj 13663 hashbclem 14424 harmonic 15832 eirrlem 16179 ruclem13 16217 prmreclem6 16899 4sqlem17 16939 vdwlem12 16970 vdwnnlem3 16975 mreexmrid 17611 psgnunilem3 19433 efgredlemb 19683 efgredlem 19684 00lss 20854 alexsublem 23938 ptcmplem4 23949 nmoleub2lem3 25022 dvferm1lem 25895 dvferm2lem 25897 plyeq0lem 26122 logno1 26552 lgsval2lem 27225 pntpbnd2 27505 ubico 32705 bnj1523 35068 antnest 35683 pm2.65ni 45047 lbioc 45518 salgencntex 46348 |
| Copyright terms: Public domain | W3C validator |