| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5456 canth 7341 canthwdom 9532 cardprclem 9932 ominf4 10265 canthp1lem2 10606 pwfseqlem4 10615 pwxpndom2 10618 lbioo 13337 ubioo 13338 fzp1disj 13544 fzonel 13634 fzouzdisj 13656 hashbclem 14417 harmonic 15825 eirrlem 16172 ruclem13 16210 prmreclem6 16892 4sqlem17 16932 vdwlem12 16963 vdwnnlem3 16968 mreexmrid 17604 psgnunilem3 19426 efgredlemb 19676 efgredlem 19677 00lss 20847 alexsublem 23931 ptcmplem4 23942 nmoleub2lem3 25015 dvferm1lem 25888 dvferm2lem 25890 plyeq0lem 26115 logno1 26545 lgsval2lem 27218 pntpbnd2 27498 ubico 32698 bnj1523 35061 antnest 35676 pm2.65ni 45040 lbioc 45511 salgencntex 46341 |
| Copyright terms: Public domain | W3C validator |