![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 194 mto 196 mt2 199 0nelop 5497 canth 7362 sdom0OLD 9109 canthwdom 9574 cardprclem 9974 ominf4 10307 canthp1lem2 10648 pwfseqlem4 10657 pwxpndom2 10660 lbioo 13355 ubioo 13356 fzp1disj 13560 fzonel 13646 fzouzdisj 13668 hashbclem 14411 harmonic 15805 eirrlem 16147 ruclem13 16185 prmreclem6 16854 4sqlem17 16894 vdwlem12 16925 vdwnnlem3 16930 mreexmrid 17587 psgnunilem3 19364 efgredlemb 19614 efgredlem 19615 00lss 20552 alexsublem 23548 ptcmplem4 23559 nmoleub2lem3 24631 dvferm1lem 25501 dvferm2lem 25503 plyeq0lem 25724 logno1 26144 lgsval2lem 26810 pntpbnd2 27090 ubico 31986 bnj1523 34082 sn-inelr 41338 pm2.65ni 43731 lbioc 44226 salgencntex 45059 |
Copyright terms: Public domain | W3C validator |