| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version | ||
| Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
| Ref | Expression |
|---|---|
| pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
| pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.65i | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
| 3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
| 5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5436 canth 7300 canthwdom 9465 cardprclem 9869 ominf4 10200 canthp1lem2 10541 pwfseqlem4 10550 pwxpndom2 10553 lbioo 13273 ubioo 13274 fzp1disj 13480 fzonel 13570 fzouzdisj 13592 hashbclem 14356 harmonic 15763 eirrlem 16110 ruclem13 16148 prmreclem6 16830 4sqlem17 16870 vdwlem12 16901 vdwnnlem3 16906 mreexmrid 17546 psgnunilem3 19406 efgredlemb 19656 efgredlem 19657 00lss 20872 alexsublem 23957 ptcmplem4 23968 nmoleub2lem3 25040 dvferm1lem 25913 dvferm2lem 25915 plyeq0lem 26140 logno1 26570 lgsval2lem 27243 pntpbnd2 27523 ubico 32753 bnj1523 35078 antnest 35721 pm2.65ni 45082 lbioc 45552 salgencntex 46380 |
| Copyright terms: Public domain | W3C validator |