Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 141 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 157 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 185 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 198 mto 200 mt2 203 0nelop 5379 canth 7167 sdom0 8778 canthwdom 9195 cardprclem 9595 ominf4 9926 canthp1lem2 10267 pwfseqlem4 10276 pwxpndom2 10279 lbioo 12966 ubioo 12967 fzp1disj 13171 fzonel 13256 fzouzdisj 13278 hashbclem 14016 harmonic 15423 eirrlem 15765 ruclem13 15803 prmreclem6 16474 4sqlem17 16514 vdwlem12 16545 vdwnnlem3 16550 mreexmrid 17146 psgnunilem3 18888 efgredlemb 19136 efgredlem 19137 00lss 19978 alexsublem 22941 ptcmplem4 22952 nmoleub2lem3 24012 dvferm1lem 24881 dvferm2lem 24883 plyeq0lem 25104 logno1 25524 lgsval2lem 26188 pntpbnd2 26468 ubico 30816 bnj1523 32764 sn-inelr 40143 pm2.65ni 42265 lbioc 42726 salgencntex 43557 |
Copyright terms: Public domain | W3C validator |