![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 195 mto 197 mt2 200 0nelop 5506 canth 7385 sdom0OLD 9148 canthwdom 9617 cardprclem 10017 ominf4 10350 canthp1lem2 10691 pwfseqlem4 10700 pwxpndom2 10703 lbioo 13415 ubioo 13416 fzp1disj 13620 fzonel 13710 fzouzdisj 13732 hashbclem 14488 harmonic 15892 eirrlem 16237 ruclem13 16275 prmreclem6 16955 4sqlem17 16995 vdwlem12 17026 vdwnnlem3 17031 mreexmrid 17688 psgnunilem3 19529 efgredlemb 19779 efgredlem 19780 00lss 20957 alexsublem 24068 ptcmplem4 24079 nmoleub2lem3 25162 dvferm1lem 26037 dvferm2lem 26039 plyeq0lem 26264 logno1 26693 lgsval2lem 27366 pntpbnd2 27646 ubico 32784 bnj1523 35064 antnest 35674 sn-inelr 42474 pm2.65ni 44984 lbioc 45466 salgencntex 46299 |
Copyright terms: Public domain | W3C validator |