Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 194 mto 196 mt2 199 0nelop 5410 canth 7229 sdom0OLD 8896 canthwdom 9338 cardprclem 9737 ominf4 10068 canthp1lem2 10409 pwfseqlem4 10418 pwxpndom2 10421 lbioo 13110 ubioo 13111 fzp1disj 13315 fzonel 13401 fzouzdisj 13423 hashbclem 14164 harmonic 15571 eirrlem 15913 ruclem13 15951 prmreclem6 16622 4sqlem17 16662 vdwlem12 16693 vdwnnlem3 16698 mreexmrid 17352 psgnunilem3 19104 efgredlemb 19352 efgredlem 19353 00lss 20203 alexsublem 23195 ptcmplem4 23206 nmoleub2lem3 24278 dvferm1lem 25148 dvferm2lem 25150 plyeq0lem 25371 logno1 25791 lgsval2lem 26455 pntpbnd2 26735 ubico 31096 bnj1523 33051 sn-inelr 40435 pm2.65ni 42592 lbioc 43051 salgencntex 43882 |
Copyright terms: Public domain | W3C validator |