![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.65i | Structured version Visualization version GIF version |
Description: Inference for proof by contradiction. (Contributed by NM, 18-May-1994.) (Proof shortened by Wolf Lammen, 11-Sep-2013.) |
Ref | Expression |
---|---|
pm2.65i.1 | ⊢ (𝜑 → 𝜓) |
pm2.65i.2 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.65i | ⊢ ¬ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.65i.2 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | con2i 139 | . 2 ⊢ (𝜓 → ¬ 𝜑) |
3 | pm2.65i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜑) |
5 | 2, 4 | pm2.61i 182 | 1 ⊢ ¬ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.21dd 194 mto 196 mt2 199 0nelop 5495 canth 7364 sdom0OLD 9111 canthwdom 9576 cardprclem 9976 ominf4 10309 canthp1lem2 10650 pwfseqlem4 10659 pwxpndom2 10662 lbioo 13359 ubioo 13360 fzp1disj 13564 fzonel 13650 fzouzdisj 13672 hashbclem 14415 harmonic 15809 eirrlem 16151 ruclem13 16189 prmreclem6 16858 4sqlem17 16898 vdwlem12 16929 vdwnnlem3 16934 mreexmrid 17591 psgnunilem3 19405 efgredlemb 19655 efgredlem 19656 00lss 20696 alexsublem 23768 ptcmplem4 23779 nmoleub2lem3 24862 dvferm1lem 25736 dvferm2lem 25738 plyeq0lem 25959 logno1 26380 lgsval2lem 27046 pntpbnd2 27326 ubico 32253 bnj1523 34380 sn-inelr 41640 pm2.65ni 44032 lbioc 44524 salgencntex 45357 |
Copyright terms: Public domain | W3C validator |